图的最小生成树(Prim算法、Kruskal算法)

目录

一、最小生成树

1.1 定义

1.2 性质

二、Prim算法

2.1 基本思想

2.2 算法思想

2.3 算法实现

三、Kruskal算法

3.1 基本思想

3.2 算法思想

3.3 算法实现


一、最小生成树

1.1 定义

1.2 性质

示意图:


二、Prim算法

2.1 基本思想

可以看出,Prim算法逐步向顶点集U中增加顶点, 故又称为“加点法”

注意:选择最小边时,条件是边的一个顶点属于U,而另一个顶点属于V-U,即保证加点后不构成回路。在有多条同样权值的边可选时,可任选其一。

 

2.2 算法思想

说明:

下面给出一个实例。

CloseEdge[i].lowcost = 0 代表顶点 i 已被并入顶点集U中。

 

2.3 算法实现

定义数组CloseEdge[ ],用于记录从U到V-U的最小边。

typedef struct {
    int adjvex;
    int lowcost;
} CloseEdge[MAX_VERTEX_NUM];

 Minium函数用于找出CloseEdge[ ]中最小的最小边。

int Minium(CloseEdge ce, int n) {
    int i, j = -1;
    int c = -1;

    for (i = 0; i < n; ++i) /* n是图G的顶点个数 */
        if (ce[i].lowcost != 0 && (c == -1 || c > ce[i].lowcost)) {
            c = ce[i].lowcost;
            /* j用于记录当前最小的最小边的顶点下标 */
            j = i; 
        }
    return j;
}

Prim算法。

void MiniSpanTree_Prim(Graph *G, VertexData k) {
    int i, e;
    int u, v;
    CloseEdge ce;

    /* 确定起始顶点的下标 */
    u = LocateVertex(G, k);

    /* 初始化数组ce */
    ce[u].lowcost = 0;
    for (i = 0; i < G->vexnum; ++i)
        if (i != u) {
            ce[i].adjvex = u;
            ce[i].lowcost = G->arcs[u][i].adj;
        }

    /* 选出最小生成树的G->vexnum - 1条边 */
    for (e = 1; e <= G->vexnum - 1; ++e) {
        v = Minium(ce, G->vexnum);
        u = ce[v].adjvex;

        /* 打印得到的最小边 */
        printf("(%s, %s, %d)\n",
                Vertex2Name(G->vertex[u].data),
                Vertex2Name(G->vertex[v].data),
                ce[v].lowcost);

        /* 将顶点v纳入集合U */
        ce[v].lowcost = 0;
        for (i = 0; i < G->vexnum; ++i) 
            /* 更新数组ce */
            if (G->arcs[v][i].adj < ce[i].lowcost) {
                ce[i].adjvex = v;
                ce[i].lowcost = G->arcs[v][i].adj;
            }
    }
}

 


三、Kruskal算法

3.1 基本思想

可以看出,Kruskal算法逐步增加生成树的边(注意加边后不能构成回路),与Prim算法相比,可称为“加边法”

 

3.2 算法思想

 下面给出一个实例。

初始化。

 

选出第一条边。

 

选出第二条边。

 选出第三条边。

 

以此类推,直到所有的顶点都在一个顶点集合内。

 

3.3 算法实现

定义边的类型;数组VertexSet用于记录顶点存储状态。

typedef struct {
    int u, v;
    int lowcost;
} Edge;

int VertexSet[MAX_VERTEX_NUM];

Minium函数用于找出图G中权值最小的边。

bool Minium(Graph *G, Edge *e) {
    int i, j;

    /* 清除使用痕迹 */
    /* 因为e是指针,所以其中的数据会被带出函数 */
    e->u = e->v = -1;
    e->lowcost = INFINITY;

    for (i = 0; i < G->vexnum; ++i)
        for (j = 0; j < G->vexnum; ++j)
            /* 要求顶点i和顶点j不能在同一个顶点集合内,否则会形成回路 */
            if (VertexSet[i] != VertexSet[j] && e->lowcost > G->arcs[i][j].adjvex) {
                e->lowcost = G->arcs[i][j].adjvex;
                e->u = i;
                e->v = j;
            }

    return e->u != -1;
}

Kruskal算法。

void MiniSpanTree_Kruskal(Graph *gn) {
    Edge e;
    int i, setid;
    int u, v;

    /* 初始化数组VertexSet */
    for (i = 0; i < gn->vexnum; ++i)
        VertexSet[i] = i;
    /* 最大的集合编号 */
    setid = i;

    while (Minium(gn, &e)) {
        /* 打印得到的最小边 */
        printf("(%s, %s, %d)\n",
                Vertex2Name(gn->vertex[e.u].data),
                Vertex2Name(gn->vertex[e.v].data),
                e.lowcost);

        u = VertexSet[e.u];
        v = VertexSet[e.v];
        /* 更新顶点集合状态 */
        for (i = 0; i < gn->vexnum; ++i)
            if (u == VertexSet[i] || v == VertexSet[i])
                VertexSet[i] = setid;

        ++setid;
    }
}

说明:

1、每合并得到一个新的顶点集合,其编号都设为当前setid的值。

2、if (u == VertexSet[i] || v == VertexSet[i]) 不仅更新顶点 u 和 v 的集合编号,同时也会更新与顶点 u 或 v 同属一个集合的顶点的集合编号。

  • 3
    点赞
  • 39
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值