图的最小生成树(Prim算法、Kruskal算法)

目录

一、最小生成树

1.1 定义

1.2 性质

二、Prim算法

2.1 基本思想

2.2 算法思想

2.3 算法实现

三、Kruskal算法

3.1 基本思想

3.2 算法思想

3.3 算法实现


一、最小生成树

1.1 定义

1.2 性质

示意图:


二、Prim算法

2.1 基本思想

可以看出,Prim算法逐步向顶点集U中增加顶点, 故又称为“加点法”

注意:选择最小边时,条件是边的一个顶点属于U,而另一个顶点属于V-U,即保证加点后不构成回路。在有多条同样权值的边可选时,可任选其一。

 

2.2 算法思想

说明:

下面给出一个实例。

CloseEdge[i].lowcost = 0 代表顶点 i 已被并入顶点集U中。

 

2.3 算法实现

定义数组CloseEdge[ ],用于记录从U到V-U的最小边。

typedef struct {
    int adjvex;
    int lowcost;
} CloseEdge[MAX_VERTEX_NUM];

 Minium函数用于找出CloseEdge[ ]中最小的最小边。

int Minium(CloseEdge ce, int n) {
    int i, j = -1;
    int c = -1;

    for (i = 0; i < n; ++i) /* n是图G的顶点个数 */
        if (ce[i].lowcost != 0 && (c == -1 || c > ce[i].lowcost)) {
            c = ce[i].lowcost;
            /* j用于记录当前最小的最小边的顶点下标 */
            j = i; 
        }
    return j;
}

Prim算法。

void MiniSpanTree_Prim(Graph *G, VertexData k) {
    int i, e;
    int u, v;
    CloseEdge ce;

    /* 确定起始顶点的下标 */
    u = LocateVertex(G, k);

    /* 初始化数组ce */
    ce[u].lowcost = 0;
    for (i = 0; i < G->vexnum; ++i)
        if (i != u) {
            ce[i].adjvex = u;
            ce[i].lowcost = G->arcs[u][i].adj;
        }

    /* 选出最小生成树的G->vexnum - 1条边 */
    for (e = 1; e <= G->vexnum - 1; ++e) {
        v = Minium(ce, G->vexnum);
        u = ce[v].adjvex;

        /* 打印得到的最小边 */
        printf("(%s, %s, %d)\n",
                Vertex2Name(G->vertex[u].data),
                Vertex2Name(G->vertex[v].data),
                ce[v].lowcost);

        /* 将顶点v纳入集合U */
        ce[v].lowcost = 0;
        for (i = 0; i < G->vexnum; ++i) 
            /* 更新数组ce */
            if (G->arcs[v][i].adj < ce[i].lowcost) {
                ce[i].adjvex = v;
                ce[i].lowcost = G->arcs[v][i].adj;
            }
    }
}

 


三、Kruskal算法

3.1 基本思想

可以看出,Kruskal算法逐步增加生成树的边(注意加边后不能构成回路),与Prim算法相比,可称为“加边法”

 

3.2 算法思想

 下面给出一个实例。

初始化。

 

选出第一条边。

 

选出第二条边。

 选出第三条边。

 

以此类推,直到所有的顶点都在一个顶点集合内。

 

3.3 算法实现

定义边的类型;数组VertexSet用于记录顶点存储状态。

typedef struct {
    int u, v;
    int lowcost;
} Edge;

int VertexSet[MAX_VERTEX_NUM];

Minium函数用于找出图G中权值最小的边。

bool Minium(Graph *G, Edge *e) {
    int i, j;

    /* 清除使用痕迹 */
    /* 因为e是指针,所以其中的数据会被带出函数 */
    e->u = e->v = -1;
    e->lowcost = INFINITY;

    for (i = 0; i < G->vexnum; ++i)
        for (j = 0; j < G->vexnum; ++j)
            /* 要求顶点i和顶点j不能在同一个顶点集合内,否则会形成回路 */
            if (VertexSet[i] != VertexSet[j] && e->lowcost > G->arcs[i][j].adjvex) {
                e->lowcost = G->arcs[i][j].adjvex;
                e->u = i;
                e->v = j;
            }

    return e->u != -1;
}

Kruskal算法。

void MiniSpanTree_Kruskal(Graph *gn) {
    Edge e;
    int i, setid;
    int u, v;

    /* 初始化数组VertexSet */
    for (i = 0; i < gn->vexnum; ++i)
        VertexSet[i] = i;
    /* 最大的集合编号 */
    setid = i;

    while (Minium(gn, &e)) {
        /* 打印得到的最小边 */
        printf("(%s, %s, %d)\n",
                Vertex2Name(gn->vertex[e.u].data),
                Vertex2Name(gn->vertex[e.v].data),
                e.lowcost);

        u = VertexSet[e.u];
        v = VertexSet[e.v];
        /* 更新顶点集合状态 */
        for (i = 0; i < gn->vexnum; ++i)
            if (u == VertexSet[i] || v == VertexSet[i])
                VertexSet[i] = setid;

        ++setid;
    }
}

说明:

1、每合并得到一个新的顶点集合,其编号都设为当前setid的值。

2、if (u == VertexSet[i] || v == VertexSet[i]) 不仅更新顶点 u 和 v 的集合编号,同时也会更新与顶点 u 或 v 同属一个集合的顶点的集合编号。

  • 3
    点赞
  • 39
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
Prim算法Kruskal算法都是用于最小生成树的经典算法Prim算法的基本思想是从一个点开始,每次选择一个与当前生成树距离最近的点加入生成树中,直到所有点都被加入生成树为止。具体实现时,可以使用一个优先队列来维护当前生成树与未加入生成树的点之间的距离,每次选择距离最小的点加入生成树中。 Kruskal算法的基本思想是从边开始,每次选择一条权值最小且不会形成环的边加入生成树中,直到生成树中包含所有点为止。具体实现时,可以使用并查集来判断是否形成环。 下面是Prim算法Kruskal算法的C语言代码实现: Prim算法: ```c #include <stdio.h> #include <stdlib.h> #include <limits.h> #define MAX_VERTICES 1000 int graph[MAX_VERTICES][MAX_VERTICES]; int visited[MAX_VERTICES]; int dist[MAX_VERTICES]; int prim(int n) { int i, j, u, min_dist, min_index, sum = 0; for (i = 0; i < n; i++) { visited[i] = 0; dist[i] = INT_MAX; } dist[0] = 0; for (i = 0; i < n; i++) { min_dist = INT_MAX; for (j = 0; j < n; j++) { if (!visited[j] && dist[j] < min_dist) { min_dist = dist[j]; min_index = j; } } u = min_index; visited[u] = 1; sum += dist[u]; for (j = 0; j < n; j++) { if (!visited[j] && graph[u][j] < dist[j]) { dist[j] = graph[u][j]; } } } return sum; } int main() { int n, m, i, j, u, v, w; scanf("%d%d", &n, &m); for (i = 0; i < n; i++) { for (j = 0; j < n; j++) { graph[i][j] = INT_MAX; } } for (i = 0; i < m; i++) { scanf("%d%d%d", &u, &v, &w); graph[u][v] = graph[v][u] = w; } printf("%d\n", prim(n)); return 0; } ``` Kruskal算法: ```c #include <stdio.h> #include <stdlib.h> #include <limits.h> #define MAX_VERTICES 1000 #define MAX_EDGES 1000000 struct edge { int u, v, w; }; int parent[MAX_VERTICES]; struct edge edges[MAX_EDGES]; int cmp(const void *a, const void *b) { return ((struct edge *)a)->w - ((struct edge *)b)->w; } int find(int x) { if (parent[x] == x) { return x; } return parent[x] = find(parent[x]); } void union_set(int x, int y) { parent[find(x)] = find(y); } int kruskal(int n, int m) { int i, sum = 0; for (i = 0; i < n; i++) { parent[i] = i; } qsort(edges, m, sizeof(struct edge), cmp); for (i = 0; i < m; i++) { if (find(edges[i].u) != find(edges[i].v)) { union_set(edges[i].u, edges[i].v); sum += edges[i].w; } } return sum; } int main() { int n, m, i; scanf("%d%d", &n, &m); for (i = 0; i < m; i++) { scanf("%d%d%d", &edges[i].u, &edges[i].v, &edges[i].w); } printf("%d\n", kruskal(n, m)); return 0; } ```

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值