博主介绍:
✌我是阿龙,一名专注于Java技术领域的程序员,全网拥有10W+粉丝。作为CSDN特邀作者、博客专家、新星计划导师,我在计算机毕业设计开发方面积累了丰富的经验。同时,我也是掘金、华为云、阿里云、InfoQ等平台的优质作者。通过长期分享和实战指导,我致力于帮助更多学生完成毕业项目和技术提升。技术范围:
我熟悉的技术领域涵盖SpringBoot、Vue、SSM、HLMT、Jsp、PHP、Nodejs、Python、爬虫、数据可视化、小程序、安卓app、大数据、物联网、机器学习等方面的设计与开发。如果你有任何技术难题,我都乐意与你分享解决方案。主要内容:
我的服务内容包括:免费功能设计、开题报告、任务书、中期检查PPT、系统功能实现、代码编写、论文撰写与辅导、论文降重、长期答辩答疑辅导。我还提供腾讯会议一对一的专业讲解和模拟答辩演练,帮助你全面掌握答辩技巧与代码逻辑。🍅获取源码请在文末联系我🍅
目录:
为什么选择我(我可以给你的定制项目推荐核心功能,一对一推荐)实现定制!!!
文章下方名片联系我即可~大家点赞、收藏、关注、评论啦 、查看👇🏻获取联系方式👇🏻精彩专栏推荐订阅:在下方专
一、详细操作演示视频
在文章的尾声,您会发现一张电子名片👤,欢迎通过名片上的联系方式与我取得联系,以获取更多关于项目演示的详尽视频内容。视频将帮助您全面理解项目的关键点和操作流程。期待与您的进一步交流!
承诺所有开发的项目,全程售后陪伴!!!
核心代码介绍:
# coding: utf-8
__author__ = 'ila'
from impala.dbapi import connect
from dj2.settings import dbName
from util.convert_mysql_to_hive import ConvertMySQLToHive
def hive_func(sql_list: list):
cv = ConvertMySQLToHive(dbName)
for sql_str in sql_list:
hive_list = cv.convert_mysql_to_hive(sql_str)
if len(hive_list) > 0:
hive_execute(hive_list)
def hive_execute(hive_list: list):
try:
conn = connect(host='127.0.0.1', port=10086, user="", password="")
except Exception as e:
print(f"{hive_execute} error : {e}")
return
cur = conn.cursor()
for hive_sql in hive_list:
try:
cur.execute(hive_sql)
except Exception as e:
print("Exception======>", e)
print("hive_sql=====>", hive_sql)
conn.close()
大数据处理函数:
# coding: utf-8
__author__ = 'ila'
import json
from flask import current_app as app
from pyspark.ml.classification import LogisticRegression
from pyspark.ml.clustering import KMeans
from pyspark.ml.feature import VectorAssembler
from pyspark.ml.regression import LinearRegression
from pyspark.sql import SparkSession
def spark_read_mysql(sql, json_filename):
'''
排序
:param sql:
:param json_filename:
:return:
'''
df = app.spark.read.format("jdbc").options(url=app.jdbc_url,
dbtable=sql).load()
count = df.count()
df_data = df.toPandas().to_dict()
json_data = []
for i in range(count):
temp = {}
for k, v in df_data.items():
temp[k] = v.get(i)
json_data.append(temp)
with open(json_filename, 'w', encoding='utf-8') as f:
f.write(json.dumps(json_data, indent=4, ensure_ascii=False))
def linear(table_name):
'''
回归
:param table_name:
:return:
'''
spark = SparkSession.builder.appName("flask").getOrCreate()
training = spark.read.format("libsvm").table(table_name)
lr = LinearRegression(maxIter=20, regParam=0.01, elasticNetParam=0.6)
lrModel = lr.fit(training)
trainingSummary = lrModel.summary
print("numIterations: %d" % trainingSummary.totalIterations)
print("objectiveHistory: %s" % str(trainingSummary.objectiveHistory))
trainingSummary.residuals.show()
print("RMSE: %f" % trainingSummary.rootMeanSquaredError)
print("r2: %f" % trainingSummary.r2)
result = trainingSummary.residuals.toJSON()
spark.stop()
return result
def cluster(table_name):
'''
聚类
:param table_name:
:return:
'''
spark = SparkSession.builder.appName("flask").getOrCreate()
dataset = spark.read.format("libsvm").table(table_name)
kmeans = KMeans().setK(2).setSeed(1)
model = kmeans.fit(dataset)
centers = model.clusterCenters()
for center in centers:
print(center)
return centers
def selector(table_name, Cols):
'''
分类
:return:
'''
spark = SparkSession.builder.appName("flask").getOrCreate()
data = spark.read.table(table_name)
assembler = VectorAssembler(inputCols=Cols, outputCol="features")
data = assembler.transform(data).select("features", "label")
train_data, test_data = data.randomSplit([0.7, 0.3], seed=0)
lr = LogisticRegression(featuresCol="features", labelCol="label")
model = lr.fit(train_data)
predictions = model.transform(test_data)
return predictions.toJSON()
1. 开发语言:Python
Python以其简洁易读的语法和强大的第三方库支持,在数据分析和科学计算领域占据重要地位。电影票房数据分析系统采用Python作为主要开发语言,能够快速实现数据采集、处理和可视化。Python丰富的数据处理库(如NumPy、Pandas)和绘图库(如Matplotlib、Seaborn)使得数据分析工作更加高效,极大地降低了系统开发和维护的复杂度。
2. 框架:Django
Django是一个成熟的Python Web开发框架,以其“快速开发”和“干净、实用”的设计理念而著称。在本系统中,Django不仅简化了Web应用的开发流程,还内置了丰富的功能模块,如ORM、认证和管理后台,帮助开发团队快速构建稳定高效的电影票房数据分析平台。其良好的扩展性和安全性,为系统未来功能的迭代升级提供了坚实基础。
3. Python版本:Python 3.7.7
Python 3.7.7作为一个稳定版本,提供了诸多性能优化和新特性支持,能够更好地满足数据处理和Web开发的需求。使用Python 3.7.7,不仅可以享受其在异步编程、类型提示等方面的改进,还能确保与Django及其他第三方库的良好兼容性,为电影票房数据分析系统提供高效、稳定的运行环境。
4. 数据库:MySQL 5.7
MySQL 5.7是一款高性能的关系型数据库管理系统,其在查询优化、存储引擎和JSON数据处理方面具有显著优势。电影票房数据分析系统选择MySQL 5.7作为数据存储解决方案,确保海量数据的高效存储和快速检索,同时保障数据一致性和安全性。严格要求使用5.7版本,确保系统在处理复杂数据结构和高并发查询时表现出色。
5. 数据库工具:Navicat 11
Navicat 11提供了一套直观易用的图形化数据库管理界面,支持MySQL等多种数据库系统。通过Navicat 11,开发和维护人员可以方便地进行数据库设计、数据迁移、备份与恢复以及SQL查询调试,有效提升数据库管理效率,确保电影票房数据分析系统的数据管理工作更加高效和稳定。
6. 开发软件:PyCharm
PyCharm是目前最流行的Python集成开发环境(IDE)之一,以其智能代码补全、调试和测试工具闻名。使用PyCharm,开发团队能够快速编写、调试和维护代码,同时享受丰富的插件支持和项目管理功能,大大提高开发效率。在电影票房数据分析系统的开发过程中,PyCharm为代码质量和项目协同提供了有力保障。
7. 浏览器:谷歌浏览器
谷歌浏览器(Google Chrome)作为当前最主流的Web浏览器之一,以其快速、稳定和安全的特点,成为用户访问电影票房数据分析系统的重要客户端。Chrome提供了强大的开发者工具,有助于前端调试和性能优化,确保系统在展示数据可视化、报表等页面时拥有良好的用户体验和兼容性。