你有一个n个整数的数组a a1, a2, a3,…,an你必须回答q个独立的查询,每个查询由两个整数l和r组成。考虑子数组a[l: 1] = [az, a1+1,, ar]。可以对子数组应用以下操作任意次数(可能为0次)1. 选择两个整数L, R,使L< L<RSr且R-L+1为奇数。2. 将子数组中从L到R的每个元素替换为子数组[L, R]中元素的异或。查询的答案是使子数组all: r]的所有元素都等于0或-1(如果不可能使所有元素都等于0)所需的最小操作数。你可以在这里找到更多关于异或操作的细节。输入第一行包含两个整数n和q (1 < n, q -105)——数组a的长度和查询的数量。下一行包含n个整数a1, a2, ....., an(0≤a;< 230) -数组a的元素。接下来q行的第i行包含两个整数l;和ri (1 <li Sri Sn) -第i个查询的描述。输出对于每个查询,输出一个整数——该查询的答案。
Example
input
Copy
7 6 3 0 3 3 1 2 3 3 4 4 6 3 7 5 6 1 6 2 2
output
Copy
-1 1 1 -1 2 0
请注意在第一个查询中,l = 3, = 4, subarray =[3,3]。我们可以只对长度为1的子数组应用operation,这不会改变数组;因此,不可能使所有元素都等于0。在第二个查询中,l =4,r=6, subarray=[3,1,2]。我们可以选择整个子数组(L=4, R=6)并将所有元素替换为它们的XOR(312) = 0,使子数组[0,0,0]。在第五个查询中,l = 1, r = 6, subarray =[3,0,3,3,1,2]。我们可以进行如下操作:1. 选择L = 4, R = 6,使子数组[3,0,3,0,0]。2. 选择L = 1, R = 5,使子数组[0,0,0,0,0]。
题解:
首先我们应该明确如果l~r区间异或如果不为0,无论怎么操作都不会让其全变为0
如果本身区间全是0,输出0即可
首先我们讨论奇数区间长度情况下
直接输出1(区间异或不为0,和全为0的情况已经判断了,下面也是)
偶数情况下
如果首尾,有一个数字为0,那么不考虑那一位,剩下的奇数区间异或肯定也为0,
如果后缀为奇数的区间异或为0,那么同理,偶数减奇数为奇数,前面奇数区间也一定异或为0
所以异或两次即可
#include<iostream>
#include<algorithm>
#include<string>
#include<cstring>
#include<vector>
#include<map>
#include<queue>
#include<set>
#include<cstdio>
using namespace std;
//#define int long long
const int N = 2e6 + 10;
typedef pair<int, int> PII;
typedef long long ll;
ll a[N];
ll s[N],x[N];
int l[N];
void solve()
{
int n,q;
cin >> n >> q;
int t = 0;
map<int,int> f[2];
for(int i = 1;i <= n;i++)
{
cin >> a[i];
s[i] = s[i - 1] + a[i];
x[i] = x[i-1]^a[i];
t ^= a[i];
int p = (i&1)^1;
if(f[p].count(t))
{
l[i] = f[p][t] + 1;
}
f[p^1][t] = i;
}
for(int i = 1;i <= q;i++)
{
int l1,r;
cin >> l1 >> r;
if((x[r]^x[l1 - 1]) != 0)
{
cout <<"-1\n";
continue;
}
if(s[r] - s[l1 - 1] == 0)
{
cout << "0\n";
continue;
}
int y = (r - l1 + 1);
if(y%2)
{
cout << 1<<"\n";
}
else
{
if(a[l1] == 0||a[r] == 0)
{
cout <<1<<"\n";
continue;
}
if(l[r] >= l1)
{
cout << 2<<"\n";
}
else
cout <<"-1\n";
}
}
}
//1 2 4
signed main()
{
ios::sync_with_stdio(0);
cin.tie(0);cout.tie(0);
int t = 1;
// cin >> t;
//scanf("%d",&t);
while (t--)
{
solve();
}
return 0;
}
//1 1 1 0 1
//1 1 1 0 1
//1 1 1 0 1
//1 1 1 0 1
//0 1 1 1 1
//0 1 1 1 1