第二章节 2.10(科学:计算能量)编写程序,计算将水从初始温度加热到最终温度所需的能量。程序应该提示用户输入水的重量(以千克为单位),以及水的初始温度和最终温度。计算能量的公式是:

题目

题目描述

题目图片

2.10(科学:计算能量)编写程序,计算将水从初始温度加热到最终温度所需的能量。程序应该提示用户输入水的重量(以千克为单位),以及水的初始温度和最终温度。计算能量的公式是:

Q = M x (最终温度 - 初始温度) x 4184

这里的M是以千克为单位的水的重量,温度以摄氏度为单位,而能量Q以焦耳为单位。下面是一个运行示例:

Enter the amount of water in kilogram: 55.5 Enter
Enter the initial temperature: 3.5 Enter
Enter the final temperature: 10.5 Enter
The energy needed is 1625484.0

解析

本题依旧是将公式转换为代码,通过读取用户的输入,通过公式计算出结果并输出结果。

代码

本题jdk1.8和jdk18代码通用

jdk1.8和jdk18代码示例

代码展示

import java.util.Scanner;

public class Test2_10 {
    public static void main(String[] args) {
        Scanner input = new Scanner(System.in);
        // 提示用户输入水的重量
        System.out.print("Enter the amount of water in kilogram:");
        double water_weight = input.nextDouble();
        // 提示用户输入初始温度
        System.out.print("Enter the initial temperature:");
        double initial_temperature = input.nextDouble();
        // 提示用户输入最终温度
        System.out.print("Enter the final temperature:");
        double final_temperature = input.nextDouble();
        // 计算能量
        double energy = water_weight * (final_temperature - initial_temperature) * 4184;
        // 输出计算结果
        System.out.print("The energy needed is " + String.format("%.1f", energy));
    }
}

运行结果

Enter the amount of water in kilogram:55.5
Enter the initial temperature:3.5
Enter the final temperature:10.5
The energy needed is 1625484.0
1. 将模型保存为.pb文件 在tensorflow2.10中,可以使用以下代码将模型保存为.pb文件: ```python import tensorflow as tf # 构建模型 model = tf.keras.Sequential([ tf.keras.layers.Input(shape=(28, 28, 1)), tf.keras.layers.Conv2D(32, 3, activation='relu'), tf.keras.layers.Flatten(), tf.keras.layers.Dense(10, activation='softmax') ]) # 训练模型 # 保存模型为.pb文件 tf.saved_model.save(model, '/path/to/model.pb') ``` 2. 编写混淆矩阵的python程序 混淆矩阵是评估分类模型性能的一种常用方法。下面是一个基于tensorflow2.10编写的计算混淆矩阵的Python程序: ```python import tensorflow as tf import numpy as np from sklearn.metrics import confusion_matrix # 加载测试数据集 (x_test, y_test), _ = tf.keras.datasets.mnist.load_data() x_test = x_test.astype('float32') / 255. x_test = np.expand_dims(x_test, axis=-1) y_test = tf.keras.utils.to_categorical(y_test, 10) # 加载模型 model = tf.saved_model.load('/path/to/model.pb') # 进行预测 y_pred = model(x_test) # 将预测结果转换为标签 y_pred = np.argmax(y_pred, axis=-1) y_test = np.argmax(y_test, axis=-1) # 计算混淆矩阵 cm = confusion_matrix(y_test, y_pred) print(cm) ``` 在上面的程序中,首先加载测试数据集,然后加载保存在.pb文件中的模型。接着,使用测试数据集进行预测,并将预测结果转换为标签。最后,使用sklearn.metrics中的confusion_matrix函数计算混淆矩阵,并输出结果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值