提取连续区域

本文介绍了物体检测的基础步骤,包括通过阈值化和形态学操作生成二值图像,然后利用OpenCV的cv::findContours函数提取图像中的连续区域轮廓。通过轮廓分析可以定位和识别图像中的物体。此外,还展示了如何在图像上绘制这些轮廓,以可视化检测结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

图像通常包含各种物体,图像分析的目的之一就是识别和提取这些物体。在物体检测和识别程序中,第一步通常就是生成二值图像,找到感兴趣物体所处的位置。不管用什么方式获得二值图像,下一个步骤都是从由 1 和0 组成的像素集合中提取出物体。
执行一次简单的阈值化操作,然后应用形态学滤波器,就能获得这幅图像。具体来说,就是提取连续区域,即二值图像中由一批连通的像素构成的形状。

OpenCV 提供了一个简单的函数,可以提取出图像中连续区域的轮廓,这个函数就是 cv::findContours:

// 用于存储轮廓的向量
std::vector<std::vector<cv::Point>> contours; 
cv::findContours(image, 
 contours, // 存储轮廓的
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值