一个菜鸡大学牲的爪洼学习笔记(一)

对做完的火车卖票系统项目的学习汇总

      如果并发量巨大的情况下如何保证系统的稳定

      服务拆分 负载均衡 限流熔断降级 缓存 使用令牌 异步处理

      数据库方面 我只想得到分库分表 读写分离以及对经常进行查询的字段添加索引提高查询速度,对字段的类型长度设置一个合适的值

缓存:

        接口查询多修改少挺适合做缓存的 例如:车票查询(测试了一下myabtis一级二级缓存感觉并不          好用还得是redis)

        缓存穿透:允许缓存为null,请求进来的时候查询缓存如果是空列表则说明数据库没有数据直          接返回给前端,如果是null则说明没有这个缓存则去数据库查询数据。
        缓存击穿:使用定时任务 30s访问一次该接口然后生成缓存,如果缓存机器失效,我想只能使          用分布式锁了。

        缓存雪崩:在原有做了redis缓存接口的基础上做一个定时任务,每30s生成热点的key同时进行限流。那么分          布式锁有没有用呢?我不禁产生这个疑问,但只能限制热点的key,此时大量请求进入数据库          无法限制流量的进入。好像并没有作用   如果实在不行也就只能进行熔断了暂停服务

解决超卖问题:

        一 使用synchronized但经过测试会导致两个问题
        1 堵塞线程太慢了 ,售卖效率不高并且性能不好
        2 如果是多节点那么没用还是会导致超卖

        二 可以使用数据库加锁解决超卖问题 缺点性能不高

        三 使用redis设置分布式锁,把火车编号和时间作为key以此判断是否是购买相同的票

                如果线程还在执行超时了怎么办?当时的想法是得弄个监控分布式锁的过期时间如果过                  期则进行刷新,经过百度发现Redisson看门狗方案,会生成一个守护线程一直刷新锁的                  时间。但如果redis宕机了,那只能使用redis集群了吧,红锁:只有拿到半数以上节点的                  锁才能视为拿到锁
常见限流算法:
静态窗口限流 动态窗口限流 漏桶限流(一个队列一边进一边出) 
令牌桶限流(一边产生令牌一边取令牌)   令牌大闸
令牌大闸:1.使用令牌锁解决机器人刷票问题 2.如果没有余票不如直接查询令牌余量节省性能
令牌大闸方案:
添加一个令牌锁(不进行解锁等待过期防止机器人进行抢票) 如果取到令牌锁则去对缓存内对令牌数量进行更改,为了防止经常查询数据库每减少一定的令牌则对数据库进行一次更改操作

购票流程:

        RocketMQ:进行异步削峰+排队机制改进用户体验将购票流程一分为二(购票请求(拿到令牌锁          发送消息)和出票动作(拿到分布式锁 处理订单)分为两个模块)

        购票请求(拿到令牌之后传递消息给消费者端),出票动作(使用排队机制防止因为没拿到购票            的分布式锁快速失败,白白消耗令牌),前端轮询购票结果
        排队机制:拿到分布式锁 使用wile(true) 每次查出一定的条数去进行出票的操作,如果没有票            了则break

        购票请求:拿到令牌锁然后去把订单写入数据库对缓存内的令牌数量进行减一操作
        然后发送MQ消息,把订单ID返回前端

        出票动作:先对订单更改为处理中然后一个车箱一个车箱的获取座位数据判断订单内的列号            以及是否售出
       车票: ABCDE 5个站 0000(未售出) 1111(售出) 例如 AB 1000  AC 1100 BC 0100 BD 0110

        

最后进行压力测试 1000线程/S

最后我发现不管使用异步注解还是修改JVM内存都并不影响最终的测试结果都是400多吞吐

记录一个遇到的问题:

        RockMQTemplate无法创建bean,原来springboot3中spring.factories功能被移除所以                      rocketmqTemplate注入失败:
        解决方法:resources下创建一个META-INF.spring 
        创建org.springframework.boot.autoconfigure.AutoConfiguration.imports

        放入org.apache.rocketmq.spring.autoconfigure.RocketMQAutoConfiguration

          

        

        

         

Quartz是OpenSymphony开源组织在Job scheduling领域又一个开源项目,它可以与J2EE与J2SE应用程序相结合也可以单独使用。Quartz可以用来创建简单或为运行十个,百个,甚至是好几万个Jobs这样复杂的程序。Jobs可以做成标准的Java组件或 EJBs。 Quartz的优势: 1、Quartz是一个任务调度框架(),它几乎可以集成到任何应用系统中。 2、Quartz是非常灵活的,它让您能够以最“自然”的方式来编写您的项目的代码,实现您所期望的行为 3、Quartz是非常轻量级的,只需要非常少的配置 —— 它实际上可以被跳出框架来使用,如果你的需求是些相对基本的简单的需求的话。 4、Quartz具有容错机制,并且可以在重启服务的时候持久化(”记忆”)你的定时任务,你的任务也不会丢失。 5、可以通过Quartz,封装成自己的分布式任务调度,实现强大的功能,成为自己的产品。6、有很多的互联网公司也都在使用Quartz。比如美团 Spring是一个很优秀的框架,它无缝的集成了Quartz,简单方便的让企业级应用更好的使用Quartz进行任务的调度。   课程说明:在我们的日常开发中,各种大型系统的开发少不了任务调度,简单的单机任务调度已经满足不了我们的系统需求,复杂的任务会让程序猿头疼, 所以急需套专门的框架帮助我们去管理定时任务,并且可以在多台机器去执行我们的任务,还要可以管理我们的分布式定时任务。本课程从Quartz框架讲起,由浅到深,从使用到结构分析,再到源码分析,深入解析Quartz、Spring+Quartz,并且会讲解相关原理, 让大家充分的理解这个框架和框架的设计思想。由于互联网的复杂性,为了满足我们特定的需求,需要对Spring+Quartz进行二次开发,整个二次开发过程都会进行讲解。Spring被用在了越来越多的项目中, Quartz也被公认为是比较好用的定时器设置工具,学完这个课程后,不仅仅可以熟练掌握分布式定时任务,还可以深入理解大型框架的设计思想。
[入门数据分析的第堂课]这是门为数据分析小白量身打造的课程,你从网络或者公众号收集到很多关于数据分析的知识,但是它们零散不成体系,所以第堂课首要目标是为你介绍:Ø  什么是数据分析-知其然才知其所以然Ø  为什么要学数据分析-有目标才有动力Ø  数据分析的学习路线-有方向走得更快Ø  数据分析的模型-分析之道,快速形成分析思路Ø  应用案例及场景-分析之术,掌握分析方法[哪些同学适合学习这门课程]想要转行做数据分析师的,零基础亦可工作中需要数据分析技能的,例如运营、产品等对数据分析感兴趣,想要更多了解的[你的收获]n  会为你介绍数据分析的基本情况,为你展现数据分析的全貌。让你清楚知道自己该如何在数据分析地图上行走n  会为你介绍数据分析的分析方法和模型。这部分是讲数据分析的道,只有学会底层逻辑,能够在面对问题时有自己的想法,才能够下步采取行动n  会为你介绍数据分析的数据处理和常用分析方法。这篇是讲数据分析的术,先有道,后而用术来实现你的想法,得出最终的结论。n  会为你介绍数据分析的应用。学到这里,你对数据分析已经有了初步的认识,并通过些案例为你展现真实的应用。[专享增值服务]1:答疑         关于课程问题可以通过微信直接询问老师,获得老师的答疑2:转行问题解答         在转行的过程中的相关问题都可以询问老师,可获得咨询机会3:打包资料分享         15本数据分析相关的电子书,次获得终身学习
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值