摘 要
在城市化进程迅猛加速的当下,城市规模持续扩张,人口与车辆数量呈爆发式增长,城市交通拥堵问题日益严峻。早晚高峰时段,主干道上车流如织,车辆缓行,通勤时间大幅延长,居民宝贵的时间被大量消耗在拥堵的路上,极大地降低了生活质量。同时,拥堵导致的物流运输不畅,也阻碍了城市经济的高效运转,严重影响城市发展。传统依赖人工经验和简单监控设备的交通管理模式,面对复杂多变的实时路况,难以做到精准、及时的调控,已无法满足当下城市交通管理需求。因此,基于数据可视化的城市交通情况数据分析显得尤为迫切,通过深度挖掘交通数据背后隐藏的规律与价值,能够为科学的管理决策提供坚实有力的支撑。
本课题充分借助 Python 丰富的数据分析库和强大的数据处理能力,对海量交通数据进行清洗、分析与建模。搭配 Django 框架,凭借其高效的数据库管理和安全稳定的架构,精心构建功能完备的后台系统。利用 Hadoop 分布式计算平台,实现对海量交通数据的高效存储与快速计算,确保数据处理的及时性与准确性。以 Flask 轻量级框架搭建简洁易用的前台交互界面。系统实现了涵盖用户管理、监测站点管理、车流监控、车辆信息管理等多元功能,通过直观的数据可视化方式,将用户人数、城市车辆数量、道路车流量以及交通指数等关键数据,以柱状图、折线图、热力图等形式清晰呈现。
该课题成果具备显著意义,能助力交通管理部门通过实时数据,精准把握交通态势,依据不同路段、不同时段的拥堵状况,及时优化交通信号配时,科学规划道路资源。同时,为市民提供实时路况信息,市民可据此合理规划出行路线,避开拥堵路段,有效缓解交通拥堵,提升城市交通运行效率。长此以往,将营造更为便捷、绿色的出行环境,为推动城市智慧交通体系建设奠定坚实基础。
关键词:城市交通拥堵;数据可视化;Python 技术;交通管理功能;智慧交通体系
Abstract
With the rapid acceleration of urbanization, the urban scale continues to expand, the number of population and vehicles is explosive, and the problem of urban traffic congestion is increasingly serious. During the morning and evening rush hours, the traffic on the main road is heavy, the vehicles are slow, and the commuting time is greatly extended. The precious time of residents is consumed on the congested roads, which greatly reduces the quality of life. At the same time, the poor logistics and transportation caused by congestion also hinders the efficient operation of the urban economy and seriously affects the development of the city. The traditional traffic management mode, which relies on manual experience and simple monitoring equipment, is difficult to achieve accurate and timely regulation when facing the complex and changeable real-time road conditions, and has been unable to meet the current needs of urban traffic management. Therefore, the analysis of urban traffic data based on data visualization is particularly urgent. Through deep mining of the hidden laws and values behind traffic data, it can provide solid and powerful support for scientific management decisions.
This project makes full use of Python's rich data analysis library and powerful data processing capabilities to clean, analyze and model the massive traffic data. With Django framework, with its efficient database management and safe and stable architecture, carefully build a complete background system. Using Hadoop distributed computing platform to realize efficient storage and rapid calculation of massive traffic data, to ensure the timeliness and accuracy of data processing. Build a simple and easy to use the front desk interactive interface with Flask lightweight framework. The system realizes multiple functions including user management, monitoring station management, traffic flow monitoring, and vehicle information management. Through intuitive data visualization, key data such as the number of users, the number of urban vehicles, road traffic flow and traffic index are clearly presented in the form of bar chart, line chart, and heat map.
The results of this project are of significant significance, which can help the traffic management department to accurately grasp the traffic situation through real-time data, timely optimize the traffic signal timing according to the congestion conditions of different sections and different periods, and scientifically plan road resources. At the same time, it provides real-time road condition information for citizens, so that citizens can reasonably plan their travel routes accordingly, avoid congested road sections, effectively alleviate traffic congestion, and improve the efficiency of urban traffic operation. In the long run, this will create a more convenient and green travel environment and lay a solid foundation for promoting the construction of urban smart transportation system.
Key words:Urban Traffic Congestion; Data Visualization; Python Technology; Traffic Management Function; Intelligent Transportation System
目 录
1、数据项定义:数据项定义对于数据的正确使用和理解非常重要,可以有效避免数据误解、数据丢失、数据错误等问题的发生。
数据项表如表2.1所示。
表2.1数据项表
数据项名 | 数据项含义 | 别名 | 数据类型 | 长度 | 取值范围 |
id | ID | ID | int | 0 - 2147483648 | |
vehicle_id | 车辆唯一标识编号 | 车牌号 ID | int | 自行设定的唯一数字编号 | |
vehicle_type | 车辆类型 | 车型 | varchar | 小汽车、公交车、货车、摩托车、非机动车等 | |
license_plate | 车牌号码 | 车牌号 | varchar | 8 | 由汉字、字母和数字组成,符合当地车牌编码规则 |
vehicle_color | 车辆颜色 | - | varchar | 15 | 黑色、白色、红色、蓝色、银色等常见颜色 |
owner_name | 车主姓名 | - | varchar | 30 | 真实姓名,由汉字组成 |
owner_contact | 车主联系方式 | - | varchar | 20 | 手机号码为 11 位数字,固定电话包含区号及号码 |
monitoring_site_id | 监测站点唯一编号 | 站点 ID | int | 11 | 自定义唯一数字编号 |
monitoring_site_name | 监测站点名称 | - | varchar | 50 | 如 “XX 路口监测站”“XX 路段监测点” |
site_location | 监测站点地理位置坐标 | - | varchar | 50 | 经度、纬度组合,格式为 “经度,纬度” |
site_device_type | 监测站点设备类型 | - | varchar | 20 | 摄像头、流量传感器、地磁传感器等 |
traffic_flow_time | 车流监控数据记录时间 | - | datetime | - | 系统可识别的日期时间格式,精确到秒 |
traffic_flow_volume | 车流量 | 流量 | int | 11 | 大于等于 0 的整数 |
vehicle_trajectory_time | 车辆轨迹记录时间点 | - | datetime | - | 系统可识别的日期时间格式,精确到秒 |
vehicle_trajectory_longitude | 车辆轨迹经度 | - | decimal(10, 6) | - | 取值范围根据实际地理坐标,如 -180.000000 ~ 180.000000 |
vehicle_trajectory_latitude | 车辆轨迹纬度 | - | decimal(10, 6) | - | 取值范围根据实际地理坐标,如 -90.000000 ~ 90.000000 |
vehicle_stop_location | 车辆落脚点地址 | - | varchar | 100 | 详细地址描述,包含街道、门牌号等 |
vehicle_stop_duration | 车辆在落脚点停留时长 | - | int | 11 | 大于等于 0 的整数,单位为分钟 |
user_id | 用户唯一标识编号 | - | int | 11 | 自定义唯一数字编号 |
user_name | 用户姓名 | - | varchar | 30 | 真实姓名,由汉字组成 |
user_contact | 用户联系方式 | - | varchar | 20 | 手机号码或邮箱地址 |
user_type | 用户类型 | - | varchar | 10 | 普通用户、管理员 |
announcement_id | 公告唯一标识编号 | - | int | 11 | 自定义唯一数字编号 |
announcement_title | 公告标题 | - | varchar | 80 | 简要概括公告内容的文字 |
announcement_publish_time | 公告发布时间 | - | datetime | - | 系统可识别的日期时间格式,精确到秒 |
announcement_content | 公告详细内容 | - | text | - | 具体的公告文本内容 |
traffic_index | 交通指数 | - | decimal(3, 1) | - | 0.0 - 10.0,数值越大表示交通越拥堵 |
road_name | 道路名称 | - | varchar | 50 | 如 “XX 大街”“XX 路” |
road_length | 道路长度 | - | decimal(10, 2) | - | 大于 0 的数值,单位为千米 |
road_width | 道路宽度 | - | decimal(5, 2) | - | 大于 0 的数值,单位为米 |
lane_number | 车道数量 | - | int | 3 | 大于 0 的整数 |
speed_limit | 道路限速 | - | int | 3 | 常见限速值,如 30、40、60、80、100 等,单位为千米 / 小时 |
2、数据结构定义:数据结构指的是在一个应用程序或系统中用来组织和管理数据的逻辑结构,因篇幅限制,仅节选部分核心数据结构进行展示。
数据结构定义表如表2.2所示。
表 2.2数据结构定义表
数据结构名称 | 含义说明 | 数据结构组成 |
用户 | 数据库中记录用户信息的功能表 | 用户表 = 用户名 + 密码 + 真实姓名 + 联系方式 + 邮箱 + 创建时间 + 最后登录时间 |
车辆 | 用于存储车辆相关详细信息的功能表 | 车辆表 = 车辆 ID + 车牌号码 + 车辆类型 + 车辆颜色 + 车主姓名 + 车主联系方式 |
监测站点 | 记录交通监测站点各项信息的功能表 | 监测站点表 = 监测站点 ID + 监测站点名称 + 站点地理位置坐标 + 站点设备类型 |
车流监控 | 保存车流监控数据及相关时间信息的功能表 | 车流监控表 = 监测站点 ID + 车流监控时间 + 车流量 |
车辆轨迹 | 存储车辆行驶轨迹相关数据的功能表 | 车辆轨迹表 = 车辆 ID + 车辆轨迹记录时间点 + 车辆轨迹经度 + 车辆轨迹纬度 |
车辆落脚点 | 记录车辆长时间或频繁停留地点信息的功能表 | 车辆落脚点表 = 车辆 ID + 车辆落脚点地址 + 车辆在落脚点停留时长 |
公告 | 存放交通相关公告内容及发布信息的功能表 | 公告表 = 公告 ID + 公告标题 + 公告发布时间 + 公告内容 |
道路 | 保存道路基本信息的功能表 | 道路表 = 道路名称 + 道路长度 + 道路宽度 + 车道数量 + 道路限速 |
交通指数 | 用于记录反映城市交通拥堵状况指标的功能表 | 交通指数表 = 时间 + 交通指数 |
3、数据流定义:数据流定义是数据在系统或业务中流动或传递过程的描述,包括来源、传输路径、目的地和处理过程等信息,数据流定义表如表2.3所示。
表 2.3数据流定义表
编号 | 数据流名 | 含义说明 | 组成 | 来源 | 去处 |
S1.1 | 车辆轨迹信息数据流 | 用于传输车辆轨迹相关信息 | 包含车辆 ID、轨迹时间点、经度、纬度等 | P1.2 车辆轨迹信息 | P1.6 车辆轨迹 |
S1.2 | 登录验证数据流 | 管理员登录时传输的验证信息 | 包含用户名、密码等 | 管理员 | P1.1 登录 |
S1.3 | 用户信息管理数据流 | 传输用户相关信息用于管理 | 包含用户 ID、姓名、联系方式等 | P1.1 登录 | P1.4 用户信息管理 |
S1.4 | 车辆信息统计结果数据流 | 传输车辆信息统计后的结果数据 | 包含车辆类型统计、车辆数量等 | P1.3 车辆信息统计 | P1.5 交通可视化信息 |
S1.5 | 薪资待遇分布信息数据流 | 传输交通相关的薪资待遇分布数据(推测与交通行业岗位薪资有关) | 薪资待遇分布相关数据 | D1 薪资待遇分布信息 | P1.5 交通可视化信息 |
S1.6 | 车辆轨迹汇总数据流 | 汇总的车辆轨迹相关数据 | 车辆轨迹的综合数据 | P1.6 车辆轨迹 | P1.8 车辆落脚点、P1.9 车辆统计 |
S1.7 | 车流监控数据传输流 | 传输车流监控相关数据 | 包含车流量、监控时间等 | P1.6 车辆轨迹 | P1.7 车流监控 |
S1.8 | 车辆落脚点信息数据流 | 传输车辆落脚点相关信息 | 包含车辆 ID、落脚点地址、停留时长等 | P1.6 车辆轨迹 | P1.8 车辆落脚点 |
S1.9 | 车辆统计数据传输流 | 传输车辆统计相关数据 | 包含车辆各类统计指标 | P1.6 车辆轨迹 | P1.9 车辆统计 |
S1.10 | 交通指数统计数据传输流 | 传输交通指数统计相关数据 | 交通指数、统计时间等 | D3 交通指数统计 | P1.7 车流监控 |
S1.11 | 车辆落脚点文本资料数据流 | 与车辆落脚点相关的文本资料数据 | 文本资料内容 | P1.8 车辆落脚点 | D4 文本资料 |
S1.12 | 车辆统计信息表数据流 | 车辆统计结果形成的信息表数据 | 车辆统计相关指标数据 | P1.9 车辆统计 | D5 信息表 |
S1.13 | 道路车流量统计基础数据流 | 用于道路车流量统计的基础数据 | 包含路段信息、车流量等 | D4 文本资料、D5 信息表 | P1.11 道路车流量统计 |
S1.14 | 城市车辆数据统计结果数据流 | 城市车辆数据统计后的结果数据 | 包含车辆总数、分布区域等 | D6 城市车辆数据统计 | P1.11 道路车流量统计 |
S1.17 | 道路车流量统计结果传输流 | 道路车流量统计后的结果数据 | 车流量统计结果相关数据 | P1.11 道路车流量统计 | P1.12 用户 |
S1.18 | 用户获取信息处理请求数据流 | 用户请求获取信息处理的相关数据 | 包含用户 ID、请求类型等 | P1.12 用户 | P1.10 获取信息处理 |
S1.19 | 处理后信息反馈数据流 | 处理后的信息反馈给用户 | 处理后的交通相关信息 | P1.10 获取信息处理 、P1.11 道路车流量统计 | P1.12 用户 |
4、数据存储定义:数据字典中的数据存储通常会包括数据存储方式、元素组成、作用等相关信息等内容。因篇幅限制,数据存储定义表如表2.4所示。
表 2.4数据存储定义表
编号 | 名称 | 作用 | 组成 | 存储方式 |
D1 | 车流量分布信息存储 | 记录不同区域、时段的车流量分布数据,用于分析交通流量的时空特征,辅助交通规划与管理决策 | 区域 ID + 时段 + 车流量数值 + 道路名称(若关联具体道路) | 存储在关系型数据库中,以区域 ID 和时段作为联合索引,方便按区域和时间查询车流量分布情况 |
D2 | 用户信息存储 | 保存系统用户的详细资料,用于用户身份验证、权限管理以及用户行为分析等 | 用户 ID + 用户名 + 密码 + 真实姓名 + 联系方式 + 邮箱 + 用户类型 + 注册时间 + 最后登录时间 | 以行存储的方式存于关系型数据库,通过用户 ID 建立主键索引,确保用户信息的唯一性与快速检索 |
D3 | 交通指数统计存储 | 存储不同时间和区域的交通指数数据,直观反映交通拥堵状况,为交通管理部门及公众提供决策依据 | 时间 + 区域 ID + 交通指数数值 + 拥堵类型(如轻度、中度、重度拥堵等) + 拥堵原因简述 | 以时间序列格式存储在时序数据库,按时间和区域 ID 建立联合索引,便于查看不同时段、不同区域的交通指数变化 |
D4 | 车辆落脚点存储 | 记录车辆长时间或频繁停留的地点信息,为城市交通规划、停车场布局等提供数据支持 | 车辆 ID + 落脚点地址 + 首次停留时间 + 最后停留时间 + 停留总时长 + 停留频次 | 保存在关系型数据库,以车辆 ID 和落脚点地址作为联合索引,方便统计特定车辆的落脚点情况以及不同落脚点的车辆聚集情况 |
D5 | 道路车流量存储 | 专门存储各条道路的实时或历史车流量数据,用于道路通行能力评估、交通拥堵预警等 | 道路 ID + 监测时间 + 车流量 + 车道占用率 + 平均车速 | 数据按时间顺序存储在时序数据库中,以道路 ID 和监测时间作为联合索引,便于按道路和时间维度查询车流量相关信息 |
D6 | 城市车辆数据统计存储 | 汇总城市范围内各类车辆的综合统计数据,帮助了解城市车辆总体规模、结构及分布情况,为宏观交通规划提供依据 | 车辆总数 + 不同车辆类型数量(如小汽车、公交车、货车等) + 各区域车辆数量分布 + 车辆增长趋势数据(如年度增长率等) | 存储在关系型数据库,按区域建立索引,方便对不同区域的城市车辆数据进行分类查询与统计分析 |
2.2.4 性能需求
- 在城市交通数据实时性要求极高的背景下,系统的响应时间至关重要。当用户发起查询,如查看实时路况、特定区域车流量等请求时,系统需在极短时间内给出反馈。正常网络环境下,对于简单查询,系统应在 1 秒内返回结果,复杂查询,如多区域交通流量对比分析,也应确保在 3 秒内完成数据加载与可视化展示。快速的响应时间能保障交通管理部门及时获取信息,做出决策,同时提升市民出行查询体验,避免因等待时间过长而影响出行规划。
- 交通数据的准确性直接关系到分析结果的可靠性和决策的科学性。系统所采集、存储与展示的各类交通数据,包括车流量、车辆轨迹、交通指数等,必须精准无误。在数据采集环节,采用高精度传感器与先进的数据校验算法,确保原始数据准确。数据处理过程中,严格遵循数据清洗规则,去除噪声与错误数据。可视化展示时,保证数据呈现与原始数据一致。例如,道路车流量统计误差应控制在极小范围内,为交通管理决策提供坚实的准确数据支撑。
- 考虑到城市交通数据的海量性与高并发访问特点,系统需具备强大的吞吐量性能。在高峰时段,大量市民查询路况、交通管理部门频繁调用数据进行分析时,系统应能稳定运行。系统需保证单位时间内可处理至少 500 次用户请求,高效完成数据的读取、分析与可视化呈现。无论是处理实时交通数据更新,还是应对大规模历史数据查询,都能确保流畅运行,满足城市交通复杂场景下的数据处理需求。
- 城市交通管理系统的稳定运行是保障城市交通有序的基础。系统需具备高稳定性,7×24 小时不间断运行,全年故障时间控制在极短范围内。面对网络波动、硬件故障等突发情况,具备自动容错与恢复机制。例如,当某一监测站点数据传输中断,系统能及时切换备用数据源或自动修复连接,确保数据持续采集与分析;服务器出现短暂负载过高时,能自动调整资源分配,维持系统稳定,保障交通数据可视化分析服务的连续性。