基于深度学习的自动驾驶目标检测系统
随着自动驾驶技术的不断发展,准确可靠的目标检测系统在自动驾驶车辆中发挥着至关重要的作用。深度学习技术,特别是卷积神经网络(CNN),已经成为目标检测的核心方法之一,广泛应用于自动驾驶的感知系统中。车辆在复杂的道路环境中需要实时识别行人、车辆、交通标志、路障等各种目标,以保障安全驾驶。
本课题提出了一种基于深度学习的自动驾驶目标检测系统,该系统通过集成实时摄像头检测、图片检测和视频文件检测功能,为用户提供多种目标检测方式。系统支持通过简单的按钮点击启用摄像头进行实时目标检测,并自动标出视频流中的目标物品。此外,用户可以选择本地存储的图片进行目标识别,系统会逐步分析图片内容并标记出检测到的目标。对于视频文件,系统能够逐帧处理并实时标记目标物品,适应动态场景下的目标检测需求。
本系统提供了多种灵活的检测选项,支持实时、图片及视频检测,满足不同使用场景的需求。通过模型选择、结果展示和结果导出功能,用户能够高效地进行目标识别和后续分析,显著提高了自动驾驶系统的可靠性和适应性。
Autonomous Driving Target Detection System Based On Deep Learning
Abstract
With the continuous development of autonomous driving technology, accurate and reliable target detection systems are playing a crucial role in autonomous vehicles. Deep learning technology, especially convolutional neural network (CNN), has become one of the core methods of target detection, and is widely used in the perception systems of autonomous driving. In the complex road environment, vehicles need to identify pedestrians, vehicles, traffic signs, roadblocks and other targets in real time to ensure safe driving.
This topic proposes an autonomous driving target detection system based on deep learning, which provides users with multiple target detection methods by integrating real-time camera detection, picture detection and video file detection functions. The system supports real-time target detection through a simple button click-enabled camera, and automatically marks the target items in the video stream. In addition, users can select locally stored images for target identification, and the system will gradually analyze the content of the images and mark the detected target. For video files, the system can process frame by frame and mark the target items in real time to meet the target detection requirements in dynamic scenarios.
This system provides a variety of flexible detection options, to support real-time, picture and video detection, to meet the needs of different usage scenarios. Through the model selection, result presentation and result export function, users can efficiently conduct target identification and follow-up analysis, which significantl