[ABC079D] Wall

本文介绍了一种使用Floyd算法求解从一个数字到另一个数字的最小花费问题,通过计算0到9之间的任意点之间的最短距离,然后应用于实际问题中,如数字转换过程中的成本计算。
摘要由CSDN通过智能技术生成

点击跳转例题

思路:据题意,从一个数字转换到另一个数字,途中经历了很多数字的最小花费,那么我们需要知道每每两个点之间的值。所以用Floyd。求0~9,任意点之间的最小花费即可。

代码:

#include <bits/stdc++.h>
#define int long long //(有超时风险) 
#define PII pair<int,int>
#define endl '\n'
#define ll long long 
#define LL __int128

using namespace std;

const int N=200+10,M=1e3+10,mod=998244353,INF=0x3f3f3f3f;

int d[N][N];

signed main()
{
	std::ios::sync_with_stdio(false);
    std::cin.tie(nullptr);
	
	//转化,题目过程与最短路转化过程一样;
	//刚好求任意点到1的最短距离;
	//floyd
	
	int n,m;cin>>n>>m;
	int cnt=9;
	for(int i=0;i<=cnt;i++)
		for(int j=0;j<=cnt;j++)
		{
			cin>>d[i][j];
		}	
		
	for(int k=0;k<=cnt;k++)
		for(int i=0;i<=cnt;i++)
			for(int j=0;j<=cnt;j++)
				if(d[i][j]>d[i][k]+d[k][j])
					d[i][j]=d[i][k]+d[k][j];
	
	int ans=0;
	for(int i=1;i<=n;i++)
		for(int j=1;j<=m;j++)
			{
				int x;cin>>x;
				if(x==-1||x==1)continue;
				ans+=d[x][1];
				//cout<<ans<<endl;
			}
	cout<<ans<<endl;	
	
	return 0;
 } 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值