class Solution: def nanCount(self, order_data: 'pd.DataFrame') -> int: num = int(order_data['choice_description'].isna().sum()) order_data['choice_description'].fillna('banana', inplace=True) return num
这段代码是一个Python类,名为Solution,其中定义了一个名为nanCount
的方法,该方法接受一个参数order_data
,该参数应该是一个Pandas DataFrame对象。
下面是具体代码的解释:
-
num = int(order_data['choice_description'].isna().sum())
:首先,这一行代码计算了DataFrame中'choice_description'这一列中有多少个缺失值(NaN)。具体地,该列的每个元素都判断是否为NaN,结果是一个由True和False组成的布尔类型的序列,然后使用sum()
函数计算True的总数,得到的是缺失值的个数。最后将该个数转换为整数类型,并赋值给变量num
。 -
order_data['choice_description'].fillna('banana', inplace=True)
:这一行代码将DataFrame中所有的缺失值都用字符串'banana'填充。具体地,该行代码使用了Pandas的fillna()
函数,其中'banana'
表示填充值,inplace=True
表示在原DataFrame对象上进行修改。 -
最后,该方法返回变量
num
,即缺失值的个数。