Engineering Mathematic I -- Notes 1

Engineering Mathematic I – Notes 1

个人学习内容的总结(第一部分),对应课程为复变函数及其积分变换


Contents:

  1. Complex Calculation
  2. Complex Function
  3. Complex Line Integrals

1. Complex Calculation

  • Argument of a complex number
    For a complex number(z = x + yi):
    θ z = { a r c t a n y x x > 0 a r c t a n y x + π x < 0 , y > 0 a r c t a n y x − π x < 0 , y < 0 \theta_{z}=\begin{cases} arctan\frac{y}{x} & x>0 \\ arctan\frac{y}{x}+\pi & x<0,y>0 \\ arctan\frac{y}{x}-\pi & x<0,y<0 \\ \end{cases} θz= arctanxyarctanxy+πarctanxyπx>0x<0,y>0x<0,y<0

  • Polar representation of a complex number:
    z = r ( c o s θ + i s i n θ ) z=r(cos\theta+\bold{i}sin\theta) z=r(cosθ+isinθ)
    , where r r r is the modulus of z.

  • Exponential form of a complex number:
    e i θ = c o s θ + i s i n θ e^{\mathrm{i}\theta}=cos\theta+\mathrm{i}sin\theta eiθ=cosθ+isinθ z = r e i θ = r ( c o s θ + i s i n θ ) z=re^{\mathrm{i}\theta}=r(cos\theta+\mathrm{i}sin\theta) z=reiθ=r(cosθ+isinθ)

  • Properties of polar/exponential forms:
    z 1 ⋅ z 2 = r 1 r 2 [ c o s ( θ 1 + θ 2 ) + i s i n ( θ 1 + θ 2 ) ] = r 1 r 2 e i ( θ 1 + θ 2 ) z_1 \cdot z_2=r_1 r_2[cos(\theta_1+\theta_2)+\mathrm{i}sin(\theta_1+\theta_2)]=r_1 r_2 e^{\mathrm{i}(\theta_1 + \theta_2)} z1z2=r1r2[cos(θ1+θ2)+isin(θ1+θ2)]=r1r2ei(θ1+θ2)

    z 1 z 2 = r 1 r 2 [ c o s ( θ 1 − θ 2 ) + i s i n ( θ 1 − θ 2 ) ] = r 1 r 2 e i ( θ 1 − θ 2 ) \frac{z_1}{z_2}=\frac{r_1}{r_2}[cos(\theta_1-\theta_2)+\mathrm{i}sin(\theta_1-\theta_2)]=\frac{r_1}{r_2} e^{\mathrm{i}(\theta_1 - \theta_2)} z2z1=r2r1[cos(θ1θ2)+isin(θ1θ2)]=r2r1ei(θ1θ2)

  • The nth power / roots of a complex number:
    ( z ) n = r n [ c o s ( n θ ) + i s i n ( n θ ) ] = r n e i n θ (z)^n=r^n [cos(n\theta)+\mathrm{i}sin(n\theta)]=r^n e^{\rm{i} n\theta} (z)n=rn[cos(nθ)+isin(nθ)]=rneinθ

    z n = r n ( c o s θ + 2 k π n + i s i n θ + 2 k π n ) = r n e i θ + 2 k π n \sqrt[n]{z}=\sqrt[n]{r}(cos\frac{\theta+2k\pi}{n}+\mathrm{i}sin\frac{\theta+2k\pi}{n})=\sqrt[n]{r}e^{\mathrm{i} \frac{\theta+2k\pi}{n}} nz =nr (cosnθ+2+isinnθ+2)=nr einθ+2
    , where k = 1, 2, 3 …

  • complex logarithm:
    ln ⁡ z = ln ⁡ ∣ z ∣ + i a r g ( z ) \ln z = \ln{|z|}+\mathrm{i} arg(z) lnz=lnz+iarg(z)
    ln ⁡ z = ln ⁡ ∣ z ∣ + i A r g ( z ) + i 2 k π \ln z = \ln{|z|}+\mathrm{i} Arg(z) + \mathrm{i}2k\pi lnz=lnz+iArg(z)+i2
    , where k = 1, 2, 3…
    Principal value of complex logarithm:
    L n z = ln ⁡ ∣ z ∣ + i A r g ( z ) \mathrm {Ln} z = \ln{|z|}+\mathrm{i} Arg(z) Lnz=lnz+iArg(z)

2. Complex Function

For a complex function with the form of f ( z ) = u ( x , y ) + i v ( x , y ) f_{(z)}=u_{(x,y)}+\bold{i} v_{(x,y)} f(z)=u(x,y)+iv(x,y) is defined on a domain D D D:
  • Cauchy - Riemann Equations
    A complex equation is analytic on D D D if it satisfies the C-R equations:
    u x = v y u_x=v_y ux=vy
    u y = − v x u_y=-v_x uy=vx

  • Cauchy - Riemann Equations in polar form
    u r = 1 r v θ u_r=\frac{1}{r}v_\theta ur=r1vθ
    v r = − 1 r u θ v_r=-\frac{1}{r}u_\theta vr=r1uθ

  • Harmonic functions and Laplace’s equation
    If a complex fucntion f ( z ) f_{(z)} f(z) is analytic on D D D, the it satisfies the Laplace’s equation:
    ∇ 2 f = f x x + f y y = 0 \nabla^2 f=f_{xx}+f_{yy}=0 2f=fxx+fyy=0

    Consequently, u ( x , y ) u_{(x,y)} u(x,y), v ( x , y ) v_{(x,y)} v(x,y) satisfy:
    ∇ 2 u = u x x + u y y = 0 \nabla^2 u = u_{xx} + u_{yy} = 0 2u=uxx+uyy=0
    ∇ 2 v = v x x + v y y = 0 \nabla^2 v = v_{xx} + v_{yy} = 0 2v=vxx+vyy=0
    Moreover, these derivatives are continuous.

    Additionally, a real function u ( x , y ) u_{(x,y)} u(x,y) is called harmonic if it has continuous second order partial derivatives and u x x + u y y = 0 u_{xx} + u_{yy} = 0 uxx+uyy=0.

  • Harmonic conjugate function
    Gievn the discribed situation, v ( x , y ) v_{(x,y)} v(x,y) is said to the harmonic conjugate function of u ( x , y ) u_{(x,y)} u(x,y) on D D D.

3. Complex Line Integrals

For a complex Integral with the form of ∫ γ f ( z ) d z \int_\gamma f_{(z)}dz γf(z)dz or with a closed path ∮ γ f ( z ) d z \oint_\gamma f_{(z)}dz γf(z)dz
  • the ML-inequality

    For a complex function f ( z ) f_{(z)} f(z) satisfying the ∣ f ( z ) ∣ ≤ M |f_{(z)}|\leq M f(z)M for all z in domain, Then
    ∣ ∮ γ f ( z ) d z ∣ ≤ M L |\oint_\gamma f_{(z)}dz|\leq ML γf(z)dzML
    , where L L L is the length of γ \gamma γ .

  • Integration by parametrization
    Let γ \gamma γ represented by z ( t ) , t ∈ ( a , b ) z_{(t)}, t\in(a,b) z(t),t(a,b):
    ∫ γ f ( z ) d z = ∫ a b f ( z ( t ) ) z ˙ ( t ) d t \int_\gamma f_{(z)}dz=\int_a^b f_{(z(t))}\dot{z}_{(t)}dt γf(z)dz=abf(z(t))z˙(t)dt
    , where z ˙ ( t ) = x ˙ ( t ) + i y ˙ ( t ) \dot{z}_{(t)} = \dot{\mathrm{x}}_{(t)}+\mathrm{i\dot{y}}_{(t)} z˙(t)=x˙(t)+iy˙(t).

  • Integration of analytic functions
    Let f ( z ) f_{(z)} f(z) be an analytic function on a simply connected domain and F ′ ( z ) = f ( z ) F'{(z)}=f(z) F(z)=f(z):
    ∫ γ f ( z ) d z = F ( z 1 ) − F ( z 2 ) \int_\gamma f(z)dz=F(z_1)-F(z_2) γf(z)dz=F(z1)F(z2)
    , where z 1 z_1 z1 is endpoint of γ \gamma γ and z 2 z_2 z2 is the starting point of γ \gamma γ.

  • Cauthy’s Integral Theorem
    If a function f ( z ) f(z) f(z) is analytic on a simply connected domain, then for every closed path γ \gamma γ:
    ∮ γ f ( z ) d z = 0 \oint_\gamma f(z)dz=0 γf(z)dz=0

  • Cauthy’s integral formula
    If f ( z ) f(z) f(z) is analytic on a simply connected domain, then for any counterclockwise oriented simple closed path C C C enclosing the point z 0 z_0 z0:
    ∮ C f ( z ) z − z 0 d z = 2 π i f ( z 0 ) \oint_C \frac{f(z)}{z-z_0}dz=2\pi \mathrm{i}f(z_0) Czz0f(z)dz=2πif(z0)
    For mutiply connected domain:
    ∮ C 1 f ( z ) z − z 0 d z + ∮ C 2 f ( z ) z − z 0 d z = 2 π i f ( z 0 ) \oint_{C_1} \frac{f(z)}{z-z_0}dz + \oint_{C_2} \frac{f(z)}{z-z_0}dz=2\pi \mathrm{i}f(z_0) C1zz0f(z)dz+C2zz0f(z)dz=2πif(z0)

  • Cauchy’s integral formula for derivatives
    If f (z) is analytic on a domain, then for any point z 0 ∈ D z_0 \in D z0D, any counterclockwise oriented simple closed path γ \gamma γ enclosing z 0 z_0 z0:
    ∮ C f ( z ) ( z − z 0 ) n + 1 d z = 2 π i n ! f ( n ) ( z 0 ) \oint_C \frac{f(z)}{(z-z_0)^{n+1}}dz=\frac{2\pi \mathrm{i}}{n!}f^{(n)}(z_0) C(zz0)n+1f(z)dz=n!2πif(n)(z0)
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值