【ML】/【Jupyter Notebook】上手简易线性回归模型

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档

文章目录


前言

我们学习机器学习实际上就是对不同算法的学习,本Jupyter Notebook记录对简易线性回归算法的代码实现。

参考/模仿:https://blog.csdn.net/heyc861221/article/details/80131325

一、数据来源

使用房子面积与价格对应关系,即一维数据对应一维数据

 

全部数据:

Jupyter Notebook中构建多元线性回归模型需要以下步骤: 1. 导入必要的库: 首先,需要导入一些必要的库,如pandas、numpy和sklearn中的linear_model模块。Pandas用于数据处理,numpy用于数值计算,linear_model模块包含了多元线性回归模型。 2. 导入数据: 构建多元线性回归模型需要有相关的数据。可以使用pandas库中的read_csv()函数从CSV文件中导入数据,或者直接定义一个包含特征和目标变量的DataFrame。 3. 数据预处理: 在建模之前,需要对数据进行预处理。这包括处理缺失值、异常值和离群值。可以使用pandas和numpy库来做这些处理,如填充缺失值、删除异常值等。 4. 划分数据集: 为了评估模型的性能,常常需要将数据集分为训练集和测试集。可以使用sklearn库中的train_test_split()函数来划分数据集。 5. 构建模型: 在sklearn库的linear_model模块中,有LinearRegression类可以用来构建多元线性回归模型。通过创建一个LinearRegression对象,可以拟合训练数据,然后进行预测。 6. 模型评估: 在得到模型的预测结果后,需要对模型进行评估。常见的评估指标包括均方误差(MSE)、平均绝对误差(MAE)和决定系数(R^2)。可以使用sklearn库中的相关函数来计算这些指标。 7. 结果可视化: 可以使用matplotlib库中的函数来可视化模型的结果。通过绘制实际值与预测值的对比图,可以更直观地了解模型的拟合程度。 总结起来,通过导入必要的库,导入数据,数据预处理,划分数据集,构建模型,模型评估和结果可视化,就可以在Jupyter Notebook中构建多元线性回归模型
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值