最优化理论复习--最优性条件(二)

本文详细讨论了凸规划中的最优性条件,包括KKT点的概念,以及如何通过拉格朗日函数来表述KKT条件。文章介绍了在凸规划中,KKT点与整体极小值点的关系,并给出了相关的数学表达式和定理,强调了一阶充分条件在凸规划中的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

上一篇

最优化理论分析复习–最优性条件(一)

约束极值问题的最优性条件

基本概念

  • 凸规划
    m i n f ( x ) min f(x) minf(x)
    s . t . { g i ( x ) ≥ 0 ,不等式约束 h j ( x ) = 0 ,等式约束 s.t.\left \{\begin{matrix} g_i (x) \geq 0,不等式约束 \\ \\h_j(x) = 0,等式约束 \end {matrix} \right. s.t. gi(x)0,不等式约束hj(x)=0,等式约束
    其中 f ( x ) f(x) f(x) 是凸函数, g i ( x ) g_i(x) gi(x) 是凹函数, h j ( x ) h_j(x) hj(x) 是线性函数(线性函数既是凸函数又是凹函数)
    要将 g i ( x ) g_i(x) gi(x)变成 ≥ 0 \geq 0 0的形式
    判断凸函数的方法,求 f ( x ) f(x) f(x) 的海森矩阵如果矩阵为正定或半正定的,则它就为凸函数

对于凸规划问题中如果 x ˉ \bar{x} xˉ 是KKT点则 x ˉ \bar{x} xˉ 为整体极小值点
在凸规划中 K K T 点 ⇔ 整体极小值点 在凸规划中 KKT点 \Leftrightarrow 整体极小值点 在凸规划中KKT整体极小值点

  • 定义: 设 x ˉ \bar{x} xˉ 为可行点, 不等式约束中在 x ˉ \bar{x} xˉ 起作用约束 g i ( x ) , i ∈ I g_i(x),i \in I gi(x)iI, 如果向量组 { ▽ g i ( x ˉ ) , ▽ h j ( x ˉ ) } \{\bigtriangledown g_i(\bar{x}), \bigtriangledown h_j(\bar{x}) \} { gi(xˉ),hj(xˉ)}线性无关,则称 x ˉ \bar{x} xˉ 为约束 g ( x ) ≥ 0 和 h ( x ) = 0 g(x) \geq 0 和 h(x) = 0 g(x)0h(x)=0的正则点

x ˉ \bar{x} xˉ 是曲面 S S S上的一个正则点,它所在的可微曲线的切向量组成空间的一个子空间
即前进方向为此时可行域的切向量
表示为
H 0 = { d   ∣ ▽ h ( x ˉ ) T d = 0 } H_0 = \{d\ | \bigtriangledown h(\bar{x})^T d = 0\} H0={ d h(xˉ)Td

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ˇasushiro

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值