上一篇
约束极值问题的最优性条件
基本概念
- 凸规划
m i n f ( x ) min f(x) minf(x)
s . t . { g i ( x ) ≥ 0 ,不等式约束 h j ( x ) = 0 ,等式约束 s.t.\left \{\begin{matrix} g_i (x) \geq 0,不等式约束 \\ \\h_j(x) = 0,等式约束 \end {matrix} \right. s.t.⎩ ⎨ ⎧gi(x)≥0,不等式约束hj(x)=0,等式约束
其中 f ( x ) f(x) f(x) 是凸函数, g i ( x ) g_i(x) gi(x) 是凹函数, h j ( x ) h_j(x) hj(x) 是线性函数(线性函数既是凸函数又是凹函数)
要将 g i ( x ) g_i(x) gi(x)变成 ≥ 0 \geq 0 ≥0的形式
判断凸函数的方法,求 f ( x ) f(x) f(x) 的海森矩阵如果矩阵为正定或半正定的,则它就为凸函数
对于凸规划问题中如果 x ˉ \bar{x} xˉ 是KKT点则 x ˉ \bar{x} xˉ 为整体极小值点
在凸规划中 K K T 点 ⇔ 整体极小值点 在凸规划中 KKT点 \Leftrightarrow 整体极小值点 在凸规划中KKT点⇔整体极小值点
- 定义: 设 x ˉ \bar{x} xˉ 为可行点, 不等式约束中在 x ˉ \bar{x} xˉ 起作用约束 g i ( x ) , i ∈ I g_i(x),i \in I gi(x),i∈I, 如果向量组 { ▽ g i ( x ˉ ) , ▽ h j ( x ˉ ) } \{\bigtriangledown g_i(\bar{x}), \bigtriangledown h_j(\bar{x}) \} { ▽gi(xˉ),▽hj(xˉ)}线性无关,则称 x ˉ \bar{x} xˉ 为约束 g ( x ) ≥ 0 和 h ( x ) = 0 g(x) \geq 0 和 h(x) = 0 g(x)≥0和h(x)=0的正则点
若 x ˉ \bar{x} xˉ 是曲面 S S S上的一个正则点,它所在的可微曲线的切向量组成空间的一个子空间
即前进方向为此时可行域的切向量
表示为
H 0 = { d ∣ ▽ h ( x ˉ ) T d = 0 } H_0 = \{d\ | \bigtriangledown h(\bar{x})^T d = 0\} H0={
d ∣▽h(xˉ)Td