最优化理论分析复习--最优性条件(一)

本文介绍了无约束和约束极值问题的一阶、二阶必要条件,以及F-J和KKT条件,探讨了凸规划中局部最优解的判定方法,强调了梯度、Hessian矩阵和约束条件在确定极值点中的关键作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

上一篇

最优化理论复习–对偶单纯形方法及灵敏度分析

无约束问题的极值条件

由于是拓展到向量空间 R n R^n Rn, 所以可由高数中的极值条件进行类比

  1. 一阶必要条件
    设函数 f ( x ) f(x) f(x) 在点 x ˉ \bar{x} xˉ 处可微, 若 x ˉ \bar{x} xˉ 是局部极小点,则 ▽ f ( x ˉ ) = 0 \bigtriangledown f(\bar{x}) = 0 f(xˉ)=0
    类比于若 x ˉ \bar{x} xˉ 是极小值点则 f ′ ( x ˉ ) = 0 f'(\bar{x}) = 0 f(xˉ)=0

  2. 二阶必要条件
    f ( x ) f(x) f(x) x ˉ \bar{x} xˉ 处二阶可微,若 x ˉ \bar{x} xˉ 是局部极小点, 则 ▽ f ( x ˉ ) = 0 \bigtriangledown f(\bar{x}) = 0 f(xˉ)=0, 且 H e s s i a n Hessian Hessian 矩阵 ▽ 2 f ( x ˉ ) \bigtriangledown^2f(\bar{x}) 2f(xˉ) 是半正定的。
    类比于 若 x ˉ \bar{x} xˉ是极小值点则 f ′ ( x ˉ ) = 0 , 且 f ′ ′ ( x ˉ ) ≥ 0 f'(\bar{x}) = 0, 且 f''(\bar{x}) \geq 0 f(xˉ)=0,f′′(xˉ)0

  3. 二阶充分条件
    设函数 f ( x ) f(x) f(x) 在点 x ˉ \bar{x} xˉ 处二次可微,若梯度 ▽ f ( x ˉ ) = 0 \bigtriangledown f(\bar{x}) = 0 f(xˉ)=0, 且 H e s s i a n Hessian Hessian 矩阵 ▽ 2 f ( x ˉ ) 正定 \bigtriangledown^2f(\bar{x})正定 2f(xˉ)正定, 则 x ˉ \bar{x} xˉ是严格局部极小点。
    类比于 f ′ ( x ˉ ) = 0 , f ′ ′ ( x ˉ ) > 0 f'(\bar{x}) = 0, f''(\bar{x}) > 0 f(xˉ)=0,f′′(xˉ)>0 x ˉ \bar{x} xˉ 是极小值点

  4. 充要条件
    f ( x ) f(x) f(x) 是定义在 R n R^n Rn 上的可微凸函数 x ˉ ∈ R n \bar{x} \in R^n xˉRn, 则 x ˉ \bar{x} xˉ 为整体极小点的充要条件是 ▽ f ( x ˉ ) = 0 \bigtriangledown f(\bar{x}) = 0 f(xˉ)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ˇasushiro

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值