图论——最小生成树

一、Prim算法

AcWing 858. Prim算法求最小生成树:图解+详细代码注释(带上了保存路径) - AcWinghttps://www.acwing.com/solution/content/38312/链接中:看文章就行,不用看代码

给定一个 n 个点 m 条边的无向图,图中可能存在重边和自环,边权可能为负数。

求最小生成树的树边权重之和,如果最小生成树不存在则输出 impossible

给定一张边带权的无向图 G=(V,E),其中 V 表示图中点的集合,E 表示图中边的集合,n=|V|,m=|E|。

由 V 中的全部 n 个顶点和 E 中 n−1 条边构成的无向连通子图被称为 G 的一棵生成树,其中边的权值之和最小的生成树被称为无向图 G 的最小生成树。

输入格式

第一行包含两个整数 n 和 m。

接下来 m 行,每行包含三个整数 u,v,w,表示点 u 和点 v 之间存在一条权值为 w 的边。

输出格式

共一行,若存在最小生成树,则输出一个整数,表示最小生成树的树边权重之和,如果最小生成树不存在则输出 impossible

数据范围

1≤n≤500,
1≤m≤10 5,
图中涉及边的边权的绝对值均不超过 。

输入样例:

4 5
1 2 1
1 3 2
1 4 3
2 3 2
3 4 4

输出样例:

6

#include<bits/stdc++.h>
using namespace std;
const int N=510,INF=0x3f3f3f3f;
int n,m;
int g[N][N];
int dist[N];
bool st[N];
int prim()
{
    memset(dist,0x3f,sizeof dist);
    
    int res=0;
    
    for(int i=0;i<n;i++)
    {
        int t=-1;
        for(int j=1;j<=n;j++)
        {
            if(!st[j]&&(t==-1||dist[t]>dist[j]))//寻找离集合S最近的点 
            t=j;
        }
        
        if(i&&dist[t]==INF) return INF;//判断是否连通,有无最小生成树
        
        if(i) res+=dist[t];
        
    
        for(int j=1;j<=n;j++)  dist[j]=min(dist[j],g[t][j]);
        
        st[t]=true;//更新最新S的权值和
    }
    return res;
}
int main()
{
    cin>>n>>m;
    memset(g,0x3f,sizeof g);
    while(m--)
    {
        int a,b,c;
        cin>>a>>b>>c;
        g[a][b]=g[b][a]=min(g[a][b],c);
    }
    int t=prim();
    if(t==INF)
    puts("impossible");
    else
    cout<<t<<endl;
    return 0;
}

二、Kruskal算法

给定一个 n 个点 m 条边的无向图,图中可能存在重边和自环,边权可能为负数。

求最小生成树的树边权重之和,如果最小生成树不存在则输出 impossible

给定一张边带权的无向图 G=(V,E),其中 V 表示图中点的集合 E 表示图中边的集合,n=|V|,m=|E|。

由 V 中的全部 n 个顶点和 E 中 n−1 条边构成的无向连通子图被称为 G 的一棵生成树,其中边的权值之和最小的生成树被称为无向图 G 的最小生成树。

输入格式

第一行包含两个整数 n 和 m。

接下来 m 行,每行包含三个整数 u,v,w,表示点 u 和点 v 之间存在一条权值为 w 的边。

输出格式

共一行,若存在最小生成树,则输出一个整数,表示最小生成树的树边权重之和,如果最小生成树不存在则输出 impossible

数据范围

1≤n≤10 5,
1≤m≤2∗10 5,
图中涉及边的边权的绝对值均不超过 1000。

输入样例:

4 5
1 2 1
1 3 2
1 4 3
2 3 2
3 4 4

输出样例:

6

 

举个例子,下图一个连通网,克鲁斯卡尔算法查找图 1 对应的最小生成树,需要经历以下几个步骤:

将连通网中的所有边按照权值大小做升序排序:


从 B-D 边开始挑选,由于尚未选择任何边组成最小生成树,且 B-D 自身不会构成环路,所以 B-D 边可以组成最小生成树。


D-T 边不会和已选 B-D 边构成环路,可以组成最小生成树:


A-C 边不会和已选 B-D、D-T 边构成环路,可以组成最小生成树:


C-D 边不会和已选 A-C、B-D、D-T 边构成环路,可以组成最小生成树:


C-B 边会和已选 C-D、B-D 边构成环路,因此不能组成最小生成树:


B-T 、A-B、S-A 三条边都会和已选 A-C、C-D、B-D、D-T 构成环路,都不能组成最小生成树。而 S-A 不会和已选边构成环路,可以组成最小生成树。


如图下图 所示,对于一个包含 6 个顶点的连通网,我们已经选择了 5 条边,这些边组成的生成树就是最小生成树。


 

#include<bits/stdc++.h>
using namespace std;
const int N=2e5+10;
int n,m;
int p[N];

struct Edge
{
    int a,b,w;
    bool operator<(Edge &W)
    {
        return w<W.w;
    }
}edge[N];
int find(int x)
{
    if(p[x]!=x)
    p[x]=find(p[x]);
    return p[x];
}
int main()
{
    cin>>n>>m;
    
    for(int i=0;i<m;i++)
    {
        int a,b,w;
        cin>>a>>b>>w;
        edge[i]={a,b,w};
    }
    
    sort(edge,edge+m);
    
    for(int i=1;i<=n;i++)  //初始化并查集
    p[i]=i;
    
    int res=0,cnt=0;     //res记录最小生成树的树边权重之和,
                         //cnt记录的是全部加入到树的集合中边的数量(可能有多个集合)
    
    
    /*
        具体可以参考连通块中点的数量,如果a和b已经在一个集合当中了,
        说明这两个点已经被一种方式连接起来了,
        如果加入a-b这条边,会导致集合中有环的生成,而树中不允许有环生
        成,所以一个连通块中的点的数量假设为x,
        那么里面x个节点应该是被串联起来的,有x-1条边,所以只有当a,b所属
        的集合不同时,才能将a-b这条边加入到总集合当中去
        */
    for(int i=0;i<m;i++)
    {
        int a=edge[i].a,b=edge[i].b,w=edge[i].w;
       
        a=find(a),b=find(b);
    
        if(a!=b)
        {
            p[a]=b;  //将a,b所在的两个集合连接起来
            res+=w;  //加入到集合中的边的权重之和
            cnt++;   //因为加入的是a-b的这一条边,将a,b所在的两个集合连接之后,全部集合中的边数加1
        }
    }
     
        
    if(cnt<n-1)//可以生成最小生成树
    puts("impossible");
    else
    cout<<res;
    return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值