====
☕ 题目:剑指 Offer 09. 用两个栈实现队列(https://www.cnblogs.com/lyck/p/14843843.html)
❓ 难度:简单
📕 描述:
用两个栈实现一个队列。队列的声明如下,请实现它的两个函数 appendTail 和 deleteHead ,分别完成在队列尾部插入整数和在队列头部删除整数的功能。(若队列中没有元素,deleteHead 操作返回 -1 )
示例 1:
复制代码
输入:
[“CQueue”,“appendTail”,“deleteHead”,“deleteHead”]
[[],[3],[],[]]
输出:[null,null,3,-1]
示例 2:
复制代码
输入:
[“CQueue”,“deleteHead”,“appendTail”,“appendTail”,“deleteHead”,“deleteHead”]
[[],[],[5],[2],[],[]]
输出:[null,-1,null,null,5,2]
💡思路:
栈是先进后出,队列是先进先出的数据结构。
那怎么用栈模拟队列呢?
需要两个栈,一个作为队头 headStack,一个作为队尾 tailStack。
-
tailStack 作为队尾,模拟入队操作,当有一个元素入队时,则将其 push 到tailStack 栈顶。
-
headStack 作为队头,模拟出队操作,当有一个元素出队时,则将 headStack 栈顶的元素 pop。
-
当 headStack 中没有元素时,将 tailStack 中所有的元素都 push 进 headStack 中。
这样一来,就用两个栈模拟了队列的出入顺序。
我们来看一下代码实现:
复制代码
public class CQueue {
//定义两个栈
Deque headStack, tailStack;
public CQueue() {
headStack = new LinkedList<>();
tailStack = new LinkedList<>();
}
//入队
public void appendTail(int value) {
//入队,往tailStack中压入值
tailStack.push(value);
}
//出队
public int deleteHead() {
//如果队头为空
if (headStack.isEmpty()) {
//则将 tailStack (队尾)的元素全部出栈,再压入headStack
while (!tailStack.isEmpty()) {
headStack.push(tailStack.pop());
}
}
if (headStack.isEmpty()) {
return -1;
}
return headStack.pop();
}
}
🚗 时间复杂度:入队O(1,出队O(n)。
🏠 空间复杂度:引入了两个栈,所以空间复杂度O(n)。
还有一道题,LeetCode232. 用栈实现队列 基本是一样的。
☕ 题目:225. 用队列实现栈 (https://leetcode-cn.com/problems/implement-stack-using-queues/)
❓ 难度:简单
📕 描述:
请你仅使用两个队列实现一个后入先出(LIFO)的栈,并支持普通栈的全部四种操作(push
、top
、pop
和 empty
)。
实现 MyStack
类:
-
void push(int x) 将元素 x 压入栈顶。
-
int pop() 移除并返回栈顶元素。
-
int top() 返回栈顶元素。
-
boolean empty() 如果栈是空的,返回 true ;否则,返回 false 。
注意:
-
你只能使用队列的基本操作 —— 也就是
push to back
、peek/pop from front
、size
和is empty
这些操作。 -
你所使用的语言也许不支持队列。 你可以使用 list (列表)或者 deque(双端队列)来模拟一个队列 , 只要是标准的队列操作即可。
示例:
复制代码
输入:
[“MyStack”, “push”, “push”, “top”, “pop”, “empty”]
[[], [1], [2], [], [], []]
输出:
[null, null, null, 2, 2, false]
解释:
MyStack myStack = new MyStack();
myStack.push(1);
myStack.push(2);
myStack.top(); // 返回 2
myStack.pop(); // 返回 2
myStack.empty(); // 返回 False
💡 思路:
这道题,实不相瞒,乍一看,我有点想偷懒,因为如果用一个双向队列的话:
是不是啪一下就实现了,但是题目里面也说了,标准队列操作,所以我们还是用单向队列。
那我们怎么实现呢?
很简单,入栈的时候,我们利用队列先进先出的特点,每次队列模拟入栈时,我们先将队列之前入队的元素都出队,仅保留最后一个进队的元素。
然后再重新入队,这样就实现了颠倒队列中的元素,这样就和栈中的次序是一样的了。
代码实现如下:
复制代码
public class MyStack {
//单向队列
Queue queue;
/**
- Initialize your data structure here.
*/
public MyStack() {
queue = new LinkedList<>();
}
/**
- Push element x onto stack.
*/
public void push(int x) {
//入队元素
queue.offer(x);
//将之前的元素,出队,重新入队
for (int i = 0; i < queue.size() - 1; i++) {
queue.offer(queue.poll());
}
}
/**
- Removes the element on top of the stack and returns that element.
*/
public int pop() {
return queue.poll();
}
/**
- Get the top element.
*/
public int top() {
return queue.peek();
}
/**
- Returns whether the stack is empty.
*/
public boolean empty() {
return queue.isEmpty();
}
}
🚗 时间复杂度:入栈O(n),出栈O(1)。
🏠 空间复杂度:引入了队列,空间复杂度O(n)。
☕ 题目:20. 有效的括号
《一线大厂Java面试题解析+后端开发学习笔记+最新架构讲解视频+实战项目源码讲义》
【docs.qq.com/doc/DSmxTbFJ1cmN1R2dB】 完整内容开源分享
(https://leetcode-cn.com/problems/valid-parentheses/)
❓ 难度:简单
📕 描述:
给定一个只包括 ‘(’,’)’,’{’,’}’,’[’,’]’ 的字符串 s ,判断字符串是否有效。
有效字符串需满足:
-
左括号必须用相同类型的右括号闭合。
-
左括号必须以正确的顺序闭合。
示例 1:
复制代码
输入:s = “()”
输出:true
示例 2:
复制代码
输入:s = “()[]{}”
输出:true
示例 3:
复制代码
输入:s = “(]”
输出:false
示例 4:
复制代码
输入:s = “([)]”
输出:false
示例 5:
复制代码
输入:s = “{[]}”
输出:true
提示:
-
1 <= s.length <= 104
-
s
仅由括号'()[]{}'
组成
💡 思路:
这是一道经典的栈的应用的题目。
思路是什么呢?
碰到左括号把元素入栈,碰到右括号就和栈顶元素比较,如果相同就把栈顶元素出栈,不匹配,就直接返回false。
代码如下:注意处理栈为空的情况
复制代码
public boolean isValid(String s) {
Deque stack = new LinkedList<>();
//遍历字符串
for (int i = 0; i < s.length(); i++) {
char c = s.charAt(i);
//遇到左括号,入栈
if (c == ‘(’ || c == ‘[’ || c == ‘{’) {
stack.push©;
}
//右括号匹配
if (c == ‘)’) {
if (stack.isEmpty() || stack.pop() != ‘(’) {
return false;
}
}
if (c == ‘]’) {
if (stack.isEmpty() || stack.pop() != ‘[’) {
return false;
}
}
if (c == ‘}’) {
if (stack.isEmpty() || stack.pop() != ‘{’) {
return false;
}
}
}
return stack.isEmpty();
}
🚗 时间复杂度:O(n)。
🏠 空间复杂度:O(n)。
给出由小写字母组成的字符串 S,重复项删除操作会选择两个相邻且相同的字母,并删除它们。
在 S 上反复执行重复项删除操作,直到无法继续删除。
在完成所有重复项删除操作后返回最终的字符串。答案保证唯一。
示例:
复制代码
输入:“abbaca”
输出:“ca”
解释:
例如,在 “abbaca” 中,我们可以删除 “bb” 由于两字母相邻且相同,这是此时唯一可以执行删除操作的重复项。之后我们得到字符串 “aaca”,其中又只有 “aa” 可以执行重复项删除操作,所以最后的字符串为 “ca”。
💡 思路:
这道题是不是和上道题差不多。
遍历字符,如果字符和栈顶元素匹配,就把栈顶元素出栈。
如果不匹配,就把元素入栈。
这样一来,栈里最后剩下的都是相邻不相同的元素。
代码如下:最后出栈的元素需要倒转
复制代码
public String removeDuplicates(String s) {
Deque stack = new LinkedList<>();
//遍历字符串
for (int i = 0; i < s.length(); i++) {
char c = s.charAt(i);
if (stack.isEmpty() || stack.peek() != c) {
//入栈
stack.push©;
} else {
//栈顶元素出栈
stack.pop();
}
}
//拼接栈中字符
StringBuilder str = new StringBuilder();
while (!stack.isEmpty()) {
str.append(stack.pop());
}
return str.reverse().toString();
}
🚗 时间复杂度:O(n)。
🏠 空间复杂度:O(n)。
☕ 题目:150. 逆波兰表达式求值 (https://leetcode-cn.com/problems/evaluate-reverse-polish-notation/)
❓ 难度:中等
📕 描述:
根据 逆波兰表示法,求表达式的值。
有效的算符包括 +
、-
、*
、/
。每个运算对象可以是整数,也可以是另一个逆波兰表达式。
说明:
-
整数除法只保留整数部分。
-
给定逆波兰表达式总是有效的。换句话说,表达式总会得出有效数值且不存在除数为 0 的情况。
示例 1:
复制代码
输入:tokens = [“2”,“1”,"+",“3”,"*"]
输出:9
解释:该算式转化为常见的中缀算术表达式为:((2 + 1) * 3) = 9
示例 2:
复制代码
输入:tokens = [“4”,“13”,“5”,"/","+"]
输出:6
解释:该算式转化为常见的中缀算术表达式为:(4 + (13 / 5)) = 6
示例 3:
复制代码
输入:tokens = [“10”,“6”,“9”,“3”,"+","-11","","/","",“17”,"+",“5”,"+"]
输出:22
解释:
该算式转化为常见的中缀算术表达式为:
((10 * (6 / ((9 + 3) * -11))) + 17) + 5
= ((10 * (6 / (12 * -11))) + 17) + 5
= ((10 * (6 / -132)) + 17) + 5
= ((10 * 0) + 17) + 5
= (0 + 17) + 5
= 17 + 5
= 22
逆波兰表达式:
逆波兰表达式是一种后缀表达式,所谓后缀就是指算符写在后面。
-
平常使用的算式则是一种中缀表达式,如 ( 1 + 2 ) * ( 3 + 4 ) 。
-
该算式的逆波兰表达式写法为 ( ( 1 2 + ) ( 3 4 + ) * ) 。
逆波兰表达式主要有以下两个优点:
- 去掉括号后表达式无歧义,上式即便写成 1 2 + 3 4 + * 也可以依据次序计算出正确结果。