LeetCode通关:栈和队列六连,java语法基础思维导图

====

剑指 Offer 09. 用两个栈实现队列


☕ 题目:剑指 Offer 09. 用两个栈实现队列(https://www.cnblogs.com/lyck/p/14843843.html)

❓ 难度:简单

📕 描述:

用两个栈实现一个队列。队列的声明如下,请实现它的两个函数 appendTail 和 deleteHead ,分别完成在队列尾部插入整数和在队列头部删除整数的功能。(若队列中没有元素,deleteHead 操作返回 -1 )

示例 1:

复制代码

输入:

[“CQueue”,“appendTail”,“deleteHead”,“deleteHead”]

[[],[3],[],[]]

输出:[null,null,3,-1]

示例 2:

复制代码

输入:

[“CQueue”,“deleteHead”,“appendTail”,“appendTail”,“deleteHead”,“deleteHead”]

[[],[],[5],[2],[],[]]

输出:[null,-1,null,null,5,2]

💡思路:

栈是先进后出,队列是先进先出的数据结构。

那怎么用栈模拟队列呢?

需要两个栈,一个作为队头 headStack,一个作为队尾 tailStack

  • tailStack 作为队尾,模拟入队操作,当有一个元素入队时,则将其 push 到tailStack 栈顶。

  • headStack 作为队头,模拟出队操作,当有一个元素出队时,则将 headStack 栈顶的元素 pop。

  • 当 headStack 中没有元素时,将 tailStack 中所有的元素都 push 进 headStack 中。

两个栈模拟队列

这样一来,就用两个栈模拟了队列的出入顺序。

我们来看一下代码实现:

复制代码

public class CQueue {

//定义两个栈

Deque headStack, tailStack;

public CQueue() {

headStack = new LinkedList<>();

tailStack = new LinkedList<>();

}

//入队

public void appendTail(int value) {

//入队,往tailStack中压入值

tailStack.push(value);

}

//出队

public int deleteHead() {

//如果队头为空

if (headStack.isEmpty()) {

//则将 tailStack (队尾)的元素全部出栈,再压入headStack

while (!tailStack.isEmpty()) {

headStack.push(tailStack.pop());

}

}

if (headStack.isEmpty()) {

return -1;

}

return headStack.pop();

}

}

🚗 时间复杂度:入队O(1,出队O(n)。

🏠 空间复杂度:引入了两个栈,所以空间复杂度O(n)。

还有一道题,LeetCode232. 用栈实现队列 基本是一样的。

LeetCode225. 用队列实现栈


☕ 题目:225. 用队列实现栈 (https://leetcode-cn.com/problems/implement-stack-using-queues/)

❓ 难度:简单

📕 描述:

请你仅使用两个队列实现一个后入先出(LIFO)的栈,并支持普通栈的全部四种操作(pushtoppop 和 empty)。

实现 MyStack 类:

  • void push(int x) 将元素 x 压入栈顶。

  • int pop() 移除并返回栈顶元素。

  • int top() 返回栈顶元素。

  • boolean empty() 如果栈是空的,返回 true ;否则,返回 false 。

注意:

  • 你只能使用队列的基本操作 —— 也就是 push to backpeek/pop from frontsize 和 is empty 这些操作。

  • 你所使用的语言也许不支持队列。 你可以使用 list (列表)或者 deque(双端队列)来模拟一个队列 , 只要是标准的队列操作即可。

示例:

复制代码

输入:

[“MyStack”, “push”, “push”, “top”, “pop”, “empty”]

[[], [1], [2], [], [], []]

输出:

[null, null, null, 2, 2, false]

解释:

MyStack myStack = new MyStack();

myStack.push(1);

myStack.push(2);

myStack.top(); // 返回 2

myStack.pop(); // 返回 2

myStack.empty(); // 返回 False

💡 思路:

这道题,实不相瞒,乍一看,我有点想偷懒,因为如果用一个双向队列的话:

双向对列

是不是啪一下就实现了,但是题目里面也说了,标准队列操作,所以我们还是用单向队列。

那我们怎么实现呢?

很简单,入栈的时候,我们利用队列先进先出的特点,每次队列模拟入栈时,我们先将队列之前入队的元素都出队,仅保留最后一个进队的元素。

然后再重新入队,这样就实现了颠倒队列中的元素,这样就和栈中的次序是一样的了。

队列实现栈

代码实现如下:

复制代码

public class MyStack {

//单向队列

Queue queue;

/**

  • Initialize your data structure here.

*/

public MyStack() {

queue = new LinkedList<>();

}

/**

  • Push element x onto stack.

*/

public void push(int x) {

//入队元素

queue.offer(x);

//将之前的元素,出队,重新入队

for (int i = 0; i < queue.size() - 1; i++) {

queue.offer(queue.poll());

}

}

/**

  • Removes the element on top of the stack and returns that element.

*/

public int pop() {

return queue.poll();

}

/**

  • Get the top element.

*/

public int top() {

return queue.peek();

}

/**

  • Returns whether the stack is empty.

*/

public boolean empty() {

return queue.isEmpty();

}

}

🚗 时间复杂度:入栈O(n),出栈O(1)。

🏠 空间复杂度:引入了队列,空间复杂度O(n)。

LeetCode20. 有效的括号


☕ 题目:20. 有效的括号

《一线大厂Java面试题解析+后端开发学习笔记+最新架构讲解视频+实战项目源码讲义》

【docs.qq.com/doc/DSmxTbFJ1cmN1R2dB】 完整内容开源分享

(https://leetcode-cn.com/problems/valid-parentheses/)

❓ 难度:简单

📕 描述:

给定一个只包括 ‘(’,’)’,’{’,’}’,’[’,’]’ 的字符串 s ,判断字符串是否有效。

有效字符串需满足:

  • 左括号必须用相同类型的右括号闭合。

  • 左括号必须以正确的顺序闭合。

示例 1:

复制代码

输入:s = “()”

输出:true

示例 2:

复制代码

输入:s = “()[]{}”

输出:true

示例 3:

复制代码

输入:s = “(]”

输出:false

示例 4:

复制代码

输入:s = “([)]”

输出:false

示例 5:

复制代码

输入:s = “{[]}”

输出:true

提示:

  • 1 <= s.length <= 104

  • s 仅由括号 '()[]{}' 组成

💡 思路:

这是一道经典的栈的应用的题目。

思路是什么呢?

碰到左括号把元素入栈,碰到右括号就和栈顶元素比较,如果相同就把栈顶元素出栈,不匹配,就直接返回false。

有效括号栈匹配

代码如下:注意处理栈为空的情况

复制代码

public boolean isValid(String s) {

Deque stack = new LinkedList<>();

//遍历字符串

for (int i = 0; i < s.length(); i++) {

char c = s.charAt(i);

//遇到左括号,入栈

if (c == ‘(’ || c == ‘[’ || c == ‘{’) {

stack.push©;

}

//右括号匹配

if (c == ‘)’) {

if (stack.isEmpty() || stack.pop() != ‘(’) {

return false;

}

}

if (c == ‘]’) {

if (stack.isEmpty() || stack.pop() != ‘[’) {

return false;

}

}

if (c == ‘}’) {

if (stack.isEmpty() || stack.pop() != ‘{’) {

return false;

}

}

}

return stack.isEmpty();

}

🚗 时间复杂度:O(n)。

🏠 空间复杂度:O(n)。

LeetCode1047. 删除字符串中的所有相邻重复项


给出由小写字母组成的字符串 S,重复项删除操作会选择两个相邻且相同的字母,并删除它们。

在 S 上反复执行重复项删除操作,直到无法继续删除。

在完成所有重复项删除操作后返回最终的字符串。答案保证唯一。

示例:

复制代码

输入:“abbaca”

输出:“ca”

解释:

例如,在 “abbaca” 中,我们可以删除 “bb” 由于两字母相邻且相同,这是此时唯一可以执行删除操作的重复项。之后我们得到字符串 “aaca”,其中又只有 “aa” 可以执行重复项删除操作,所以最后的字符串为 “ca”。

💡 思路:

这道题是不是和上道题差不多。

遍历字符,如果字符和栈顶元素匹配,就把栈顶元素出栈。

如果不匹配,就把元素入栈。

这样一来,栈里最后剩下的都是相邻不相同的元素。

删除字符串相邻重复项

代码如下:最后出栈的元素需要倒转

复制代码

public String removeDuplicates(String s) {

Deque stack = new LinkedList<>();

//遍历字符串

for (int i = 0; i < s.length(); i++) {

char c = s.charAt(i);

if (stack.isEmpty() || stack.peek() != c) {

//入栈

stack.push©;

} else {

//栈顶元素出栈

stack.pop();

}

}

//拼接栈中字符

StringBuilder str = new StringBuilder();

while (!stack.isEmpty()) {

str.append(stack.pop());

}

return str.reverse().toString();

}

🚗 时间复杂度:O(n)。

🏠 空间复杂度:O(n)。

LeetCode150. 逆波兰表达式求值


☕ 题目:150. 逆波兰表达式求值 (https://leetcode-cn.com/problems/evaluate-reverse-polish-notation/)

❓ 难度:中等

📕 描述:

根据 逆波兰表示法,求表达式的值。

有效的算符包括 +-*/ 。每个运算对象可以是整数,也可以是另一个逆波兰表达式。

说明:

  • 整数除法只保留整数部分。

  • 给定逆波兰表达式总是有效的。换句话说,表达式总会得出有效数值且不存在除数为 0 的情况。

示例 1:

复制代码

输入:tokens = [“2”,“1”,"+",“3”,"*"]

输出:9

解释:该算式转化为常见的中缀算术表达式为:((2 + 1) * 3) = 9

示例 2:

复制代码

输入:tokens = [“4”,“13”,“5”,"/","+"]

输出:6

解释:该算式转化为常见的中缀算术表达式为:(4 + (13 / 5)) = 6

示例 3:

复制代码

输入:tokens = [“10”,“6”,“9”,“3”,"+","-11","","/","",“17”,"+",“5”,"+"]

输出:22

解释:

该算式转化为常见的中缀算术表达式为:

((10 * (6 / ((9 + 3) * -11))) + 17) + 5

= ((10 * (6 / (12 * -11))) + 17) + 5

= ((10 * (6 / -132)) + 17) + 5

= ((10 * 0) + 17) + 5

= (0 + 17) + 5

= 17 + 5

= 22

逆波兰表达式:

逆波兰表达式是一种后缀表达式,所谓后缀就是指算符写在后面。

  • 平常使用的算式则是一种中缀表达式,如 ( 1 + 2 ) * ( 3 + 4 ) 。

  • 该算式的逆波兰表达式写法为 ( ( 1 2 + ) ( 3 4 + ) * ) 。

逆波兰表达式主要有以下两个优点:

  • 去掉括号后表达式无歧义,上式即便写成 1 2 + 3 4 + * 也可以依据次序计算出正确结果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值