文章目录
1. 数据类型的介绍
1.整型家族
类型 | 有符号 | 无符号 |
---|---|---|
char | signed char | unsigned char |
short [int] | signed short | unsigned short |
int | signed int | unsigned int |
long [int] | signed long | unsigned long |
long long [int] | signed long long | unsigned long long |
图中 [int] 可以省略
2.浮点型家族
单精度浮点型:float
双进度浮点型:double
3.构造类型(自定义类型)
数组类型 char ch[10]
结构体类型 struct
枚举类型 enum
联合类型 union
4.指针类型
int * p 整型指针
char * p 字符型指针
float * p 浮点型指针
void * p 空类型指针
5.空类型
void 表示空类型
用作函数返回值、参数、指针类型。
创建这么多数据类型的意义是什么呢?
答:
- 可以避免空间的浪费(例如:存储数字1用char类型就够了,没有必要用int类型,节省了内存空间)
- 可以根据数据类型判断它所存储的数(例如:看见float就知道里面放的是小数,看见int就知道是整数)
2.整型在数据中的存储
众所周知,在计算机中只认识0和1,那么我们输入的10,20之类的整数是如何被计算机所识别的呢?
答:通过二进制将整数进行存储的(但是正整数与负整数的存储又有不同,下面便来看看吧)。
1.原码、反码 、补码
计算机中的整数有三种二进制表示方法——原码、反码、补码==(但是在内存中存储的是补码)==
三种表示方式都有符号位(0表示正,1表示负)与 数值位
正整数的原码、反码、补码都相同
负整数的原码、反码、补码都不同
负整数
反码 = 原码符号位不变其他按位取反
补码 = 反码+1
由此可以得出,在内存中存储的为补码。
为什么要存补码,存原码不香吗,不是更简单,为什么要复杂化呢
CPU只有加法器,所有减法要通过 加法来完成
{
int c = 1 - 1;
//c = 1 + (-1);
//00000000000000000000000000000001 --1的原码
//00000000000000000000000000000001 --1的反码
//00000000000000000000000000000001 --1的补码
//10000000000000000000000000000001 --(-1)的原码
//11111111111111111111111111111110 --(-1)的反码
//11111111111111111111111111111111 --(-1)的补码
//如果用原码相加
//00000000000000000000000000000001 --1的原码
//10000000000000000000000000000001 --(-1)的原码
//10000000000000000000000000000010 --结果
//结果等于-2 与事实不符 --- 不能用原码存储
//如果用补码相加
// 00000000000000000000000000000001 --1的补码
// 11111111111111111111111111111111 --(-1)的补码
//100000000000000000000000000000000 --结果(33位)
//由于c是int类型要32位bit所以发生截断只要后面32位
//所以结果c = 0,与事实相符 --所以用补码存储
}
2.大小端
下面的图和上面一样只是便于观察
又是这个图,相信之前的你肯定有不懂的地方——为什么在内存中要从右边的(高地址)向左边(低地址)读取
这便是由于大小端的问题。
什么是大小端?
大端存储模式:是指数据的低位保存在内存的高地址处,而数据的高位保存在内存的低地址处。
小端存储模式:是指数据的低位保存在内存的低地址处,而数据的高位保存在内存的高地址处。
可见上面的图片展示的便是小端存储。
为什么要有大端与小端呢
这是因为在计算机系统中,我们是以字节为单位的,每个地址单元都对应着一个字节,一个字节为8bit。但是在C语言中除了8bit的char之外,还有16bit的short型,32bit的long型(要看具体的编译器),另外,对于位数大于8位的处理器,例如16位或者32位的处理器,由于寄存器宽度大于一个字节,那么必然存在着一个如果将多个字节安排的问题。因此就导致了大端存储模式和小端存储模式。
例如一个16bit的short型x,在内存中的地址为0x0010,x的值为0x1122,那么0x11为高字节,0x22为低字节。对于大端模式,就将0x11放在低地址中,即0x0010中,0x22放在高地址中,即0x0011中。小端模式,刚好相反。
为什么统一用大端或小端呢
计算机电路先处理低位字节,效率比较高,因为计算都是从低位开始的,所以,计算机的内部处理都是小端字节序。但是,人类还是习惯读写大端字节序,所以,除了计算机的内部处理,其他的场合几乎都是大端字节序,比如网络传输和文件储存。
不同的电脑,不同的编译器可能用来存放数据的方式不一样(有的大端存储,有的小端存储)
如何检查自己的编译器是大端存储还是小端存储呢?
#include<stdio.h>
//判断编译器是大端存储还是小端存储
#include<stdio.h>
int check_sys()
{
int i = 1;
return (*(char*)&i);
}
int main()
{
int ret = check_sys();
if (ret == 1)
{
printf("小端\n");
}
else
{
printf("大端\n");
}
return 0;
}
3.浮点型在内存中的存储
1.浮点型与整型存储相同吗
#include<stdio.h>
#include<stdio.h>
int main()
{
int n = 9;
float* pFloat = (float*)&n;
printf("n的值为:%d\n", n);
printf("*pFloat的值为:%f\n", *pFloat);
*pFloat = 9.0;
printf("num的值为:%d\n", n);
printf("*pFloat的值为:%f\n", *pFloat);
return 0;
}
上面代码会输出四组数据,最初的我以为是 9 , 9.0 ,9 , 9.0
结果可想而知而肯定是错的了。
大家很好奇吧,我也一样。
这是由于浮点型和整型的存储与读取的方式不同
2.浮点型数据的存储规则
根据国际标准IEEE(电气和电子工程协会) 754,任意一个二进制浮点数V可以表示成下面的形式:
- (-1)^S * M * 2^E
- (-1)^S表示符号位,当S=0,V为正数;当S=1,V为负数。
- M表示有效数字,大于等于1,小于2。
- 2^E表示指数位。
例如:
看到这,想必大家大概知道浮点型数据是如何存储的吧。肯定有人有疑问那3.14 ,5.14这样的小数是如何存储的呢。
并不是所有的浮点型数据都能精确的存储在内存中
像5.5这样的小数可以精确存储
而像3.14这样的数据并不能精确存储,而是近似存储,只能是接近3.14
IEEE 754规定:
对于32位的浮点数,最高的1位是符号位s,接着的8位是指数E,剩下的23位为有效数字M。
对于64位的浮点数,最高的1位是符号位S,接着的11位是指数E,剩下的52位为有效数字M 。
IEEE 754对有效数字M和指数E,还有一些特别规定:
M存储
1≤M<2 ,也就是说,M可以写成 1.xxxxxx 的形式,其中xxxxxx表示小数部分。
IEEE 754规定,在计算机内部保存M时,默认这个数的第一位总是1,因此可以被舍去,只保存后面的
xxxxxx部分。
E存储
E为一个无符号整数(unsigned int)
如果E为8位,它的取值范围为0~255
如果E为11位,它的取值范围为0~2047
肯定有人有问题,如果是0.5存储的化E就是-1了,那如何存了。
科学家肯定想到了。
办法就是:如果是float类型那么E(计算值)= E(真实值) + 127
如果是double类型那么E(计算值)= E(真实值) + 1023
0.5的E = -1 +127 , E = 126存储到内存中
3.浮点型数据的读取
M的读取
M在存储时,去除了小数点前的1,那么在读取时就要加上。
比如保存1.01的时候,只保存01,等到读取的时候,再把第一位的1加上去。
这样做的目的,是节省1位有效数字。以32位浮点数为例,留给M只有23位,将第一位的1舍去以后,等于可以保存24位有效数字
E读取
指数E从内存中取出还可以再分成三种情况:
E不全为0或不全为1
这时,指数E的计算值减去127(或1023),得到真实值。再将有效数字M加1
比如:
0.5的二进制形式为0.1,由于规定正数部分必须为1,即将小数点右移1位,则为
1.0*2^(-1),其阶码为-1+127=126,表示为01111110,
E全为0
E全为0,那么 E(计算值)= E(真实值) + 127
浮点数 = 正(负) 1.xxxxx * 2^-127
浮点数趋近于0
下面看科学家们如何规定:
浮点数的指数E等于1-127(或者1-1023)即为真实值,即E = -126
有效数字M不再加上第一位的1,而是还原为0.xxxxxx的小数。这样做是为了表示±0,以及接近于
0的很小的数字。
E全为1
E全为1,那么 E(计算值)= E(真实值) + 127
浮点数 = 正(负) 1.xxxxx * 2^128
浮点数趋近于无穷
下面看科学家们如何规定:
这时,有效数字M全为0,表示正负无穷大。
4.对前面例题讲解
int main()
{
int n = 9; //00000000000000000000000000001001 --补码
float* pFloat = (float*)&n;
printf(“n的值为:%d\n”, n); // 9毫无疑问
printf(“*pFloat的值为:%f\n”, *pFloat); //0.000000 //为什么呢?
//00000000000000000000000000001001 --9的补码
//如果以float类型读取 //0 00000000 00000000000000000001001
//S E M
//E(真实值) = E(计算值) - 127
//E(真实值) = -118
//V = 1.0 * 2^-118
//V几乎为0 , V = 0 *pFloat = 9.0;
// 1001.0 //0 10000010 00100000000000000000000 --9以float存储在内存中
printf(“num的值为:%d\n”, n); //1091567616
//01000001000100000000000000000000 按int 方式读取结果等于1091567616
printf(“*pFloat的值为:%f\n”, *pFloat); //9.000000毫无疑问
return 0;