数据在内存中的存储

1. 数据类型的介绍

1.整型家族

类型有符号无符号
charsigned charunsigned char
short [int]signed shortunsigned short
intsigned intunsigned int
long [int]signed longunsigned long
long long [int]signed long longunsigned long long

图中 [int] 可以省略

2.浮点型家族

单精度浮点型:float

双进度浮点型:double

3.构造类型(自定义类型)

数组类型 char ch[10]

结构体类型 struct

枚举类型 enum

联合类型 union

4.指针类型

int * p 整型指针

char * p 字符型指针

float * p 浮点型指针

void * p 空类型指针

5.空类型

void 表示空类型

用作函数返回值、参数、指针类型。

创建这么多数据类型的意义是什么呢?

答:

  1. 可以避免空间的浪费(例如:存储数字1用char类型就够了,没有必要用int类型,节省了内存空间)
  2. 可以根据数据类型判断它所存储的数(例如:看见float就知道里面放的是小数,看见int就知道是整数)

2.整型在数据中的存储

众所周知,在计算机中只认识0和1,那么我们输入的10,20之类的整数是如何被计算机所识别的呢?

答:通过二进制将整数进行存储的(但是正整数与负整数的存储又有不同,下面便来看看吧)。

1.原码、反码 、补码

计算机中的整数有三种二进制表示方法——原码、反码、补码==(但是在内存中存储的是补码)==

三种表示方式都有符号位(0表示正,1表示负)与 数值位

整数的原码、反码、补码相同

整数的原码、反码、补码不同

负整数

反码 = 原码符号位不变其他按位取反

补码 = 反码+1

请添加图片描述

由此可以得出,在内存中存储的为补码。

为什么要存补码,存原码不香吗,不是更简单,为什么要复杂化呢

CPU只有加法器,所有减法要通过 加法来完成

{
	int c = 1 - 1;
	//c = 1 + (-1);
	//00000000000000000000000000000001  --1的原码 
	//00000000000000000000000000000001  --1的反码 
	//00000000000000000000000000000001  --1的补码 
	
	//10000000000000000000000000000001  --(-1)的原码
	//11111111111111111111111111111110  --(-1)的反码
	//11111111111111111111111111111111  --(-1)的补码

	//如果用原码相加
	//00000000000000000000000000000001  --1的原码
	//10000000000000000000000000000001  --(-1)的原码
	//10000000000000000000000000000010  --结果
	//结果等于-2 与事实不符 --- 不能用原码存储

	//如果用补码相加
	// 00000000000000000000000000000001  --1的补码  
	// 11111111111111111111111111111111  --(-1)的补码
	//100000000000000000000000000000000  --结果(33位)
	//由于c是int类型要32位bit所以发生截断只要后面32位
	//所以结果c = 0,与事实相符  --所以用补码存储
}

2.大小端

请添加图片描述

下面的图和上面一样只是便于观察

请添加图片描述

又是这个图,相信之前的你肯定有不懂的地方——为什么在内存中要从右边的(高地址)向左边(低地址)读取

这便是由于大小端的问题。

什么是大小端?

大端存储模式:是指数据的低位保存在内存的高地址处,而数据的高位保存在内存的低地址处。

小端存储模式:是指数据的低位保存在内存的低地址处,而数据的高位保存在内存的高地址处。

可见上面的图片展示的便是小端存储。

为什么要有大端与小端呢

这是因为在计算机系统中,我们是以字节为单位的,每个地址单元都对应着一个字节,一个字节为8bit。但是在C语言中除了8bit的char之外,还有16bit的short型,32bit的long型(要看具体的编译器),另外,对于位数大于8位的处理器,例如16位或者32位的处理器,由于寄存器宽度大于一个字节,那么必然存在着一个如果将多个字节安排的问题。因此就导致了大端存储模式和小端存储模式。

例如一个16bit的short型x,在内存中的地址为0x0010,x的值为0x1122,那么0x11为高字节,0x22为低字节。对于大端模式,就将0x11放在低地址中,即0x0010中,0x22放在高地址中,即0x0011中。小端模式,刚好相反。

为什么统一用大端或小端呢

计算机电路先处理低位字节,效率比较高,因为计算都是从低位开始的,所以,计算机的内部处理都是小端字节序。但是,人类还是习惯读写大端字节序,所以,除了计算机的内部处理,其他的场合几乎都是大端字节序,比如网络传输和文件储存。

不同的电脑,不同的编译器可能用来存放数据的方式不一样(有的大端存储,有的小端存储)

如何检查自己的编译器是大端存储还是小端存储呢?

#include<stdio.h>
//判断编译器是大端存储还是小端存储
#include<stdio.h>
int check_sys()
{
	int i = 1;
	return (*(char*)&i);
}

int main()
{
	int ret = check_sys();
	if (ret == 1)
	{
		printf("小端\n");
	}
	else
	{
		printf("大端\n");
	}
	return 0;
}

3.浮点型在内存中的存储

1.浮点型与整型存储相同吗

#include<stdio.h>
#include<stdio.h>
int main()
{
	int n = 9;
	float* pFloat = (float*)&n;  
	printf("n的值为:%d\n", n); 
	printf("*pFloat的值为:%f\n", *pFloat);
	*pFloat = 9.0;
	printf("num的值为:%d\n", n);
	printf("*pFloat的值为:%f\n", *pFloat);
	return 0;
}

上面代码会输出四组数据,最初的我以为是 9 , 9.0 ,9 , 9.0

结果可想而知而肯定是错的了。

请添加图片描述

大家很好奇吧,我也一样。

这是由于浮点型和整型的存储与读取的方式不同

2.浮点型数据的存储规则

根据国际标准IEEE(电气和电子工程协会) 754,任意一个二进制浮点数V可以表示成下面的形式:

  • (-1)^S * M * 2^E
  • (-1)^S表示符号位,当S=0,V为正数;当S=1,V为负数。
  • M表示有效数字,大于等于1,小于2。
  • 2^E表示指数位。

例如:

请添加图片描述

看到这,想必大家大概知道浮点型数据是如何存储的吧。肯定有人有疑问那3.14 ,5.14这样的小数是如何存储的呢。

并不是所有的浮点型数据都能精确的存储在内存中

像5.5这样的小数可以精确存储

而像3.14这样的数据并不能精确存储,而是近似存储,只能是接近3.14

IEEE 754规定:
对于32位的浮点数,最高的1位是符号位s,接着的8位是指数E,剩下的23位为有效数字M。

请添加图片描述

对于64位的浮点数,最高的1位是符号位S,接着的11位是指数E,剩下的52位为有效数字M 。

请添加图片描述

IEEE 754对有效数字M和指数E,还有一些特别规定:

M存储

1≤M<2 ,也就是说,M可以写成 1.xxxxxx 的形式,其中xxxxxx表示小数部分。

IEEE 754规定,在计算机内部保存M时,默认这个数的第一位总是1,因此可以被舍去,只保存后面的

xxxxxx部分。

E存储

E为一个无符号整数(unsigned int)

如果E为8位,它的取值范围为0~255

如果E为11位,它的取值范围为0~2047

肯定有人有问题,如果是0.5存储的化E就是-1了,那如何存了。

科学家肯定想到了。

办法就是:如果是float类型那么E(计算值)= E(真实值) + 127

​ 如果是double类型那么E(计算值)= E(真实值) + 1023

0.5的E = -1 +127 , E = 126存储到内存中

3.浮点型数据的读取

M的读取

M在存储时,去除了小数点前的1,那么在读取时就要加上。

比如保存1.01的时候,只保存01,等到读取的时候,再把第一位的1加上去。

这样做的目的,是节省1位有效数字。以32位浮点数为例,留给M只有23位,将第一位的1舍去以后,等于可以保存24位有效数字

E读取

指数E从内存中取出还可以再分成三种情况:

E不全为0或不全为1

这时,指数E的计算值减去127(或1023),得到真实值。再将有效数字M加1

比如:
0.5的二进制形式为0.1,由于规定正数部分必须为1,即将小数点右移1位,则为
1.0*2^(-1),其阶码为-1+127=126,表示为01111110,

E全为0

E全为0,那么 E(计算值)= E(真实值) + 127

浮点数 = 正(负) 1.xxxxx * 2^-127

浮点数趋近于0

下面看科学家们如何规定:

浮点数的指数E等于1-127(或者1-1023)即为真实值,即E = -126

有效数字M不再加上第一位的1,而是还原为0.xxxxxx的小数。这样做是为了表示±0,以及接近于
0的很小的数字。

E全为1

E全为1,那么 E(计算值)= E(真实值) + 127

浮点数 = 正(负) 1.xxxxx * 2^128

浮点数趋近于无穷

下面看科学家们如何规定:

这时,有效数字M全为0,表示正负无穷大。

4.对前面例题讲解

int main()
{
int n = 9;

//00000000000000000000000000001001 --补码

​ float* pFloat = (float*)&n;
​ printf(“n的值为:%d\n”, n); // 9毫无疑问
​ printf(“*pFloat的值为:%f\n”, *pFloat); //0.000000

​ //为什么呢?
​ //00000000000000000000000000001001 --9的补码
​ //如果以float类型读取

​ //0 00000000 00000000000000000001001
​ //S E M
​ //E(真实值) = E(计算值) - 127
​ //E(真实值) = -118
​ //V = 1.0 * 2^-118
​ //V几乎为0 , V = 0

​ *pFloat = 9.0;
​ // 1001.0

//0 10000010 00100000000000000000000 --9以float存储在内存中

​ printf(“num的值为:%d\n”, n); //1091567616

//01000001000100000000000000000000 按int 方式读取结果等于1091567616

​ printf(“*pFloat的值为:%f\n”, *pFloat); //9.000000毫无疑问
​ return 0;

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值