【DataWhale AI 夏令营】机器学习:电力需求预测挑战赛——task3

一、赛题任务

给定多个房屋对应电力消耗历史N天的相关序列数据等信息,预测房屋对应电力的消耗。

二、赛题简介

赛题数据由训练集和测试集组成,为了保证比赛的公平性,将每日日期进行脱敏,用1-N进行标识。
即1为数据集最近一天,其中1-10为测试集数据。
数据集由字段id(房屋id)、 dt(日标识)、type(房屋类型)、target(实际电力消耗)组成。

三、优化方向

提取更多特征

在数据挖掘比赛中,特征总是最终制胜法宝,去思考什么信息可以帮助我们提高预测精准度,然后将其转化为特征输入到模型。

尝试不同的模型

模型间存在很大的差异,预测结果也会不一样,比赛的过程就是不断的实验和试错的过程,通过不断的实验寻找最佳模型,同时帮助自身加强模型的理解能力

四、特征优化

历史平移特征

通过历史平移获取上个阶段的信息。

# 历史平移
for i in range(10,36):
    data[f'target_shift{i}'] = data.groupby('id')['target'].shift(i)

差分特征

可以帮助获取相邻阶段的增长差异,描述数据的涨减变化情况。在此基础上还可以构建相邻数据比值变化、二阶差分等。

# 历史平移 + 差分特征
for i in range(1,4):
    data[f'target_shift10_diff{i}'] = data.groupby('id')['target_shift10'].diff(i)

窗口统计特征

窗口统计可以构建不同的窗口大小,然后基于窗口范围进统计均值、最大值、最小值、中位数、方差的信息,可以反映最近阶段数据的变化情况。

# 窗口统计
for win in [15,30,50,70]:
    data[f'target_win{win}_mean'] = data.groupby('id')['target'].rolling(window=win, min_periods=3, closed='left').mean().values
    data[f'target_win{win}_max'] = data.groupby('id')['target'].rolling(window=win, min_periods=3, closed='left').max().values
    data[f'target_win{win}_min'] = data.groupby('id')['target'].rolling(window=win, min_periods=3, closed='left').min().values
    data[f'target_win{win}_std'] = data.groupby('id')['target'].rolling(window=win, min_periods=3, closed='left').std().values

# 历史平移 + 窗口统计
for win in [7,14,28,35,50,70]:
    data[f'target_shift10_win{win}_mean'] = data.groupby('id')['target_shift10'].rolling(window=win, min_periods=3, closed='left').mean().values
    data[f'target_shift10_win{win}_max'] = data.groupby('id')['target_shift10'].rolling(window=win, min_periods=3, closed='left').max().values
    data[f'target_shift10_win{win}_min'] = data.groupby('id')['target_shift10'].rolling(window=win, min_periods=3, closed='left').min().values
    data[f'target_shift10_win{win}_sum'] = data.groupby('id')['target_shift10'].rolling(window=win, min_periods=3, closed='left').sum().values
    data[f'target_shift710win{win}_std'] = data.groupby('id')['target_shift10'].rolling(window=win, min_periods=3, closed='left').std().values

五、模型融合

加权平均融合

通过构建cv_model函数,内部使用lightgbm、xgboost和catboost模型,依次运行完三个模型之后,将各自的结果进行取平均进行融合。

离线评估

对每个模型均选择经典的K折交叉验证方法进行离线评估,大体流程如下:
1、K折交叉验证会把样本数据随机的分成K份;
2、每次随机的选择K-1份作为训练集,剩下的1份做验证集;
3、当这一轮完成后,重新随机选择K-1份来训练数据;
4、最后将K折预测结果取平均作为最终提交结果。
离线评估

融合实现

from sklearn.model_selection import StratifiedKFold, KFold, GroupKFold
import lightgbm as lgb
import xgboost as xgb
from catboost import CatBoostRegressor
from sklearn.metrics import mean_squared_error, mean_absolute_error
def cv_model(clf, train_x, train_y, test_x, clf_name, seed = 2024):
    '''
    clf:调用模型
    train_x:训练数据
    train_y:训练数据对应标签
    test_x:测试数据
    clf_name:选择使用模型名
    seed:随机种子
    '''
    folds = 5
    kf = KFold(n_splits=folds, shuffle=True, random_state=seed)
    oof = np.zeros(train_x.shape[0])
    test_predict = np.zeros(test_x.shape[0])
    cv_scores = []
    
    for i, (train_index, valid_index) in enumerate(kf.split(train_x, train_y)):
        print('************************************ {} ************************************'.format(str(i+1)))
        trn_x, trn_y, val_x, val_y = train_x.iloc[train_index], train_y[train_index], train_x.iloc[valid_index], train_y[valid_index]
        
        if clf_name == "lgb":
            train_matrix = clf.Dataset(trn_x, label=trn_y)
            valid_matrix = clf.Dataset(val_x, label=val_y)
            params = {
                'boosting_type': 'gbdt',
                'objective': 'regression',
                'metric': 'mae',
                'min_child_weight': 6,
                'num_leaves': 2 ** 6,
                'lambda_l2': 10,
                'feature_fraction': 0.8,
                'bagging_fraction': 0.8,
                'bagging_freq': 4,
                'learning_rate': 0.1,
                'seed': 2023,
                'nthread' : 16,
                'verbose' : -1,
            }
            model = clf.train(params, train_matrix, 1000, valid_sets=[train_matrix, valid_matrix],
                              categorical_feature=[], verbose_eval=200, early_stopping_rounds=100)
            val_pred = model.predict(val_x, num_iteration=model.best_iteration)
            test_pred = model.predict(test_x, num_iteration=model.best_iteration)
        
        if clf_name == "xgb":
            xgb_params = {
              'booster': 'gbtree', 
              'objective': 'reg:squarederror',
              'eval_metric': 'mae',
              'max_depth': 5,
              'lambda': 10,
              'subsample': 0.7,
              'colsample_bytree': 0.7,
              'colsample_bylevel': 0.7,
              'eta': 0.1,
              'tree_method': 'hist',
              'seed': 520,
              'nthread': 16
              }
            train_matrix = clf.DMatrix(trn_x , label=trn_y)
            valid_matrix = clf.DMatrix(val_x , label=val_y)
            test_matrix = clf.DMatrix(test_x)
            
            watchlist = [(train_matrix, 'train'),(valid_matrix, 'eval')]
            
            model = clf.train(xgb_params, train_matrix, num_boost_round=1000, evals=watchlist, verbose_eval=200, early_stopping_rounds=100)
            val_pred  = model.predict(valid_matrix)
            test_pred = model.predict(test_matrix)
            
        if clf_name == "cat":
            params = {'learning_rate': 0.1, 'depth': 5, 'bootstrap_type':'Bernoulli','random_seed':2023,
                      'od_type': 'Iter', 'od_wait': 100, 'random_seed': 11, 'allow_writing_files': False}
            
            model = clf(iterations=1000, **params)
            model.fit(trn_x, trn_y, eval_set=(val_x, val_y),
                      metric_period=200,
                      use_best_model=True, 
                      cat_features=[],
                      verbose=1)
            
            val_pred  = model.predict(val_x)
            test_pred = model.predict(test_x)
        
        oof[valid_index] = val_pred
        test_predict += test_pred / kf.n_splits
        
        score = mean_absolute_error(val_y, val_pred)
        cv_scores.append(score)
        print(cv_scores)
        
    return oof, test_predict

# 选择lightgbm模型
lgb_oof, lgb_test = cv_model(lgb, train[train_cols], train['target'], test[train_cols], 'lgb')
# 选择xgboost模型
xgb_oof, xgb_test = cv_model(xgb, train[train_cols], train['target'], test[train_cols], 'xgb')
# 选择catboost模型
cat_oof, cat_test = cv_model(CatBoostRegressor, train[train_cols], train['target'], test[train_cols], 'cat')

# 进行取平均融合
final_test = (lgb_test + xgb_test + cat_test) / 3

stacking融合

stacking是一种分层模型集成框架。以两层为例,第一层由多个基学习器组成,其输入为原始训练集,第二层的模型则是以第一层基学习器的输出作为特征加入训练集进行再训练,从而得到完整的stacking模型。

第一层(类比cv_model函数)

  1. 划分训练数据为K折(5折为例,每次选择其中四份作为训练集,一份作为验证集)。
  2. 针对各个模型RF、ET、GBDT、XGB,分别进行5次训练,每次训练保留一份样本用作训练时的验证,训练完成后分别对Validation set,Test set进行预测,对于Test set一个模型会对应5个预测结果,将这5个结果取平均;对于Validation set一个模型经过5次交叉验证后,所有验证集数据都含有一个标签。此步骤结束后:5个验证集(总数相当于训练集全部)在每个模型下分别有一个预测标签,每行数据共有4个标签(4个算法模型),测试集每行数据也拥有四个标签(4个模型分别预测得到的)。

第二层(类比stack_model函数)

将训练集中的四个标签外加真实标签当作五列新的特征作为新的训练集,选取一个训练模型,根据新的训练集进行训练,然后应用测试集的四个标签组成的测试集进行预测作为最终的result。

模型实现

def stack_model(oof_1, oof_2, oof_3, predictions_1, predictions_2, predictions_3, y):
    '''
    输入的oof_1, oof_2, oof_3可以对应lgb_oof,xgb_oof,cat_oof
    predictions_1, predictions_2, predictions_3对应lgb_test,xgb_test,cat_test
    '''
    train_stack = pd.concat([oof_1, oof_2, oof_3], axis=1)
    test_stack = pd.concat([predictions_1, predictions_2, predictions_3], axis=1)
    
    oof = np.zeros((train_stack.shape[0],))
    predictions = np.zeros((test_stack.shape[0],))
    scores = []
    
    from sklearn.model_selection import RepeatedKFold
    folds = RepeatedKFold(n_splits=5, n_repeats=2, random_state=2021)
    
    for fold_, (trn_idx, val_idx) in enumerate(folds.split(train_stack, train_stack)): 
        print("fold n°{}".format(fold_+1))
        trn_data, trn_y = train_stack.loc[trn_idx], y[trn_idx]
        val_data, val_y = train_stack.loc[val_idx], y[val_idx]
        
        clf = Ridge(random_state=2021)
        clf.fit(trn_data, trn_y)

        oof[val_idx] = clf.predict(val_data)
        predictions += clf.predict(test_stack) / (5 * 2)
        
        score_single = mean_absolute_error(val_y, oof[val_idx])
        scores.append(score_single)
        print(f'{fold_+1}/{5}', score_single)
    print('mean: ',np.mean(scores))
   
    return oof, predictions
    
stack_oof, stack_pred = stack_model(pd.DataFrame(lgb_oof), pd.DataFrame(xgb_oof), pd.DataFrame(cat_oof), 
                                    pd.DataFrame(lgb_test), pd.DataFrame(xgb_test), pd.DataFrame(cat_test), train['target'])

六、深度学习方案

导入库

代码开始处导入了所需的库,包括数据处理库NumPy和Pandas,以及用于构建LSTM模型的Keras库。

import numpy as np
import pandas as pd
from sklearn.preprocessing import MinMaxScaler
from keras.models import Sequential
from keras.layers import LSTM, Dense, RepeatVector, TimeDistributed
from keras.optimizers import Adam

读取数据

使用Pandas的read_csv函数读取训练数据集train.csv和测试数据集test.csv。

train = pd.read_csv('train.csv')
test = pd.read_csv('test.csv')

数据预处理

  • preprocess_data函数用于准备训练和测试数据。
  • 数据按id列进行分组。
  • 对于每个id,提取特定列(索引为3的列)的数据作为时间序列。
  • 创建多个序列,每个序列长度为look_back,默认为100。
  • 序列被反转,并且如果序列长度不足100,则用0填充。
  • 训练数据集的标签Y是序列的一部分,同样进行反转。
  • 测试数据集(OOT,Out-Of-Time)也被反转并用0填充以满足序列长度要求。
# 数据预处理
def preprocess_data(df, look_back=100):
    # 将数据按照id进行分组
    grouped = df.groupby('id')
    datasets = {}
    for id, group in grouped:
        datasets[id] = group.values
        
    # 准备训练数据集
    X, Y = [], []
    for id, data in datasets.items():
        for i in range(10, 15): # 每个id构建5个序列
            a = data[i:(i + look_back), 3]
            a = np.append(a, np.array([0]*(100-len(a))))
            X.append(a[::-1])
            Y.append(data[i-10:i, 3][::-1])
    
    # 准备测试数据集
    OOT = []
    for id, data in datasets.items():
        a = data[:100, 3]
        a = np.append(a, np.array([0]*(100-len(a))))
        OOT.append(a[::-1])
    
    return np.array(X, dtype=np.float64), np.array(Y, dtype=np.float64), np.array(OOT, dtype=np.float64)

模型构建函数定义

  • build_model函数用于构建LSTM模型。
  • 模型包括一个LSTM层,用于学习时间序列数据的特征,以及一个重复向量层RepeatVector,用于复制上一个LSTM层的输出以供下一个LSTM层使用。
  • 再次使用LSTM层和时间分布的密集层来预测序列的下一个值。
  • 模型使用均方误差作为损失函数,并使用Adam优化器。
# 定义模型
def build_model(look_back, n_features, n_output):
    model = Sequential()
    model.add(LSTM(50, input_shape=(look_back, n_features)))
    model.add(RepeatVector(n_output))
    model.add(LSTM(50, return_sequences=True))
    model.add(TimeDistributed(Dense(1)))
    model.compile(loss='mean_squared_error', optimizer=Adam(0.001))
    return model

构建和训练模型

  • 设置序列长度look_back、特征数n_features和输出时间单位数n_output。
  • 调用preprocess_data函数预处理训练数据。
  • 使用build_model函数构建模型。
  • 使用模型的fit方法训练模型,指定迭代次数(epochs)和批量大小(batch_size)。
# 构建和训练模型
look_back = 100  # 序列长度
n_features = 1  # 假设每个时间点只有一个特征
n_output = 10  # 预测未来10个时间单位的值

进行预测

  • 使用训练好的模型对测试数据集进行预测。
  • 这里需要注意注意自行将预测结果转化为提交格式。
# 预处理数据
X, Y, OOT = preprocess_data(train, look_back=look_back)

# 构建模型
model = build_model(look_back, n_features, n_output)

# 训练模型
model.fit(X, Y, epochs=10, batch_size=64, verbose=1)

# 进行预测
predicted_values = model.predict(OOT)
  • 11
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

飞升 | 霸气

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值