- 博客(72)
- 收藏
- 关注
原创 线性代数第六讲——二次型
摘要: 二次型是由n元变量构成的二次齐次多项式,可表示为矩阵形式$f=x^TAx$,其中A为实对称矩阵。化二次型为标准型的方法包括配方法、合同变换法和正交变换法。配方法直观但繁琐;合同变换法系统性强;正交变换法通过特征值对角化,几何意义明确。标准形仅含平方项,规范形系数为1、-1或0,由正负惯性指数唯一确定。正定二次型的判定需满足矩阵A的所有特征值为正,或通过顺序主子式全为正等条件。正交变换法步骤包括求特征值、特征向量正交化及构造正交矩阵P,最终化为标准形$f=\lambda_1y_1^2+\cdots+\
2025-12-15 19:38:20
1290
原创 线性代数第一章—向量空间及其性质
高中学过,有大小,有方向的量称为向量,比如力、速度、加速度等,可用来表示向量。相对于高中课程,线性代数中向量的定义会更加严格:我们会尽量使用列向量来表示向量,这样更符合线性代数的习惯。我们可以通过画图来表示二维向量/三维向量的几何意义是什么。
2025-12-09 10:30:47
337
原创 第十八讲多元函数积分学(四)——平面第二型曲线积分和空间第二型曲线积分
点整个过程所做的功,正好可以拆解为沿x方向上分量。从向量运算的角度来看,结果是。从物理背景上理解就是变力。在向量场中沿着某一曲线。
2025-12-08 20:42:20
159
原创 第18讲多元函数积分学(三)——第一型曲面积分
第一型曲面积分是将二重积分推广到曲面上的积分,主要用于计算曲面的物理量。其核心方法是"一投二代三计算",通过将曲面投影到坐标平面转化为二重积分计算。需要注意对称性的应用和投影时避免重合。虽然考试中较少出现,但可能结合空间解析几何知识综合考查。实际应用包括求曲面面积和重心/形心,但真题中尚未涉及。计算时需注意曲面拆分和参数化等技巧。
2025-12-08 16:14:07
287
原创 计网第三章—数据链路层
今日格言:人生短短一万八千多天,今天是一万八千分之一,今天也是明天了,也是将来的每一天。帧错分三种:帧丢失、帧重复或帧失序。A选项是为了防止出现帧重复;B和C都是差错控制;D选项是正确的。发送方对发送的每个数据帧设计一个计数器,当计时器到期而该帧的确认帧仍未到达时,发送方将重发该帧。
2025-10-25 09:31:40
360
原创 计网第二章——物理层
1码元可以携带若干比特的信息,比如下图中的一个码元可能有4种变化形式,每种信号都对应一个4进制数,也就是携带2bit的信息。码间串扰:具体的信道所能通过的频率范围总是有限的。信号中的许多高频分量往往不能通过信道,否则在传输时就会衰减,导致接收端收到的信号波形失去码元之间的清晰界限。①通信链路与通信结点的连接需要一些电路接口,物理层规定了这些接口的一些参数,如机械形状和尺寸、交换电路的数量和排列等,例如。从给出的这个公式中可以看出,提升信道带宽、增强信号功率、降低噪声功率,都可以提高信道的极限比特率。
2025-10-23 23:42:19
730
原创 操作系统第一章——操作系统概述
遵循 “先建立整体框架,再深入细节,最后真题实战” 的学习路径。这个顺序也基本是你学习的顺序。1. 进程管理2. 内存管理3. 文件系统4. 输入输出(I/O)管理5. 操作系统概述以王道的书作为复习主线学习方法:看一节王道书,做一节的课后选择题,初步建立知识框架。视频课辅助:如果看书觉得抽象,可以去B站看王道的视频课,跟着视频理解难点(如PV操作、地址变换)。真题为王:在完成第一轮复习后,立即开始研究真题。构建知识体系:操作系统各章节并非完全独立。要能把知识点串联起来,例如:进程运行需要内存(内存管
2025-09-21 12:29:00
1229
原创 概率论第五讲—大数定律与中心极限定理
在这里插入图片描述](https://i-blog.csdnimg.cn/direct/82c2d205c9084112bd328a5498522ea2.png#p。
2025-09-09 13:46:49
334
原创 概率论第四讲—随机变量的数字特征
概率论的基础知识,学概率论不知道数学期望EX、标准差DX或者σX、方差DX、协方差CovXY、相关系数ρXY就相当于上小学数学不学加减乘除。
2025-09-09 13:37:45
284
原创 概率论第三讲——多维随机变量及其分布
本文主要介绍了n维随机变量及其分布函数的概念和应用。重点讲解了二维随机变量的联合分布函数、边缘分布函数,以及离散型和连续型随机变量的概率分布、边缘分布和条件分布。文章通过实际应用案例(如投资组合优化、用户推荐系统、天气预报等)说明n维随机变量在分析多维度关联性的重要性,并详细阐述了联合分布函数与概率密度之间的关系。内容涵盖概率论中多维随机变量的核心概念和计算方法,适合作为概率论学习的参考材料。
2025-09-05 23:48:53
518
原创 概率论第一讲—随机事件与概率
本文摘要主要介绍了概率论中的基本概念、事件关系与运算、古典概型与几何概型,以及概率的性质与计算方法。重点内容包括事件的关系与集合运算的对应,全概率公式和贝叶斯公式的核心应用,古典概型的有限样本点与等可能性特征,几何概型的无限样本点与几何度量特性。此外,还详细阐述了概率的有界性、加法公式、条件概率等计算性质,并通过抓阄模型、生日问题等实例说明概率的实际运用。最后强调了全概率公式的本质是由多原因导致结果的分析工具。
2025-09-03 09:42:28
597
1
原创 第十六讲—无穷级数
若级数各项可正、可负、亦可为零,则称这样的级数为,写为∑n1∞un。给任意项级数的每一项加上绝对值,写成∑n1∞∣un∣,这样就使得∣un∣≥0成了正项级数,它叫作原级数∑n1∞un的绝对值级数。这就是用研究正项级数级数的敛散性判别方法—定义法,比较判别法、比较判别法的极限形式、比值判别法(达朗贝尔判别法)、根值判别法(柯西判别法)、积分判别法来研究绝对值级数。
2025-08-31 10:37:38
557
原创 第七章 查找
用个例子来理解以下什么是查找?比如用数据库查找淘宝账号和密码,然后登陆,这就需要用到查找,或者叫索引算法,又叫做Index 算法。如果是在长度为n的顺序表List中顺序查找一个目标值,时间复杂度肯定是O(n)。假如给你一个顺序表是有序的,就会很慢,。假如你要猜某个人的生日,如果只从1号开始猜,一直猜到30/31号,那你可能要猜30多次,效率太低,效果不好。你可以从15号开始猜,如果对方的回答是小了,就可以从22号或者23号开始猜。如果对方的回答是大了,就可以从8号开始猜。
2025-08-21 13:31:42
216
原创 2012年英语一真题
这个说实话感觉太绕了,关于政治或者法律的单词一词多义,不熟悉,错了。这也是一篇评论某件事的议论型文章,主要讲的是核电站,比较易懂,错了。这是一篇典型的批驳型文章,文章架构值得学习,总体来说不难,错了。的原因,比联系生活的议论文更抽象,有一些专有名词,错了。这一篇相对上一篇简单,读起来没那么弯弯绕,因为能。,尽管有些单词的意思是猜的,但还是全对。这篇文章感觉很难,可能是。
2025-08-15 11:33:04
578
原创 第六章 图
不用看了,树,图,查找,排序,这些都是统考的重点和难点,选择题每章节至少2个4分,大题这四章里至少也会有一个10分。也就是说45分的题,后四章占了至少26分,几乎六成。
2025-08-14 08:48:44
195
原创 第四章——串
KMP算法对于初学者来说可能不太容易理解,读者可以尝试多读几遍本章的内容,并参考一些其他教材相关内容来巩固这个知识点。学习KMP算法时,应从分析暴力法的弊端入手,思考如何去优化它。实际上,已匹配相等的序列就是模式串的某个前缀,因此每次回溯就相当于模式串与模式串的某个前缀比较,这种频繁的重复比较是效率低的原因。这时,可从分析模式串本身的结构入手,以便得知当匹配到某个字符不等时,应该向后滑动到什么位置,即已匹配相等的前缀和模式串若首尾重合,则对齐它们,对齐部分显然无须再比较。
2025-08-08 12:18:31
155
原创 第3章栈、队列、数组和矩阵
接下来我们将从数据的存储结构上来了解栈,栈也采用之前线性表使用的两种存储结构—顺序存储和链式存储。至于索引存储,我只在操作系统和计算机组成原理的存储系统这一章里看到过,而散列存储似乎和查找这一章节有关。这是从数据的逻辑结构上了解栈。接下来从数据的运算角度来看栈—栈的基本操作。(真正有效的文字就应该这样,简短而富含信息,值得学习)一组连续的存储单元在这里就是指。(Bottom)是固定的,不允许进行插入和删除的另外一端。(Top)是栈(线性表)允许进行插入和删除的那一端。🌟栈的定义:栈(Stack)是。
2025-08-02 08:20:53
306
原创 第15讲——微分方程
本文系统介绍了微分方程的基本概念与分类方法。主要内容包括:1)微分方程的定义与阶数判断;2)常微分方程(ODE)与偏微分方程(PDE)的区别;3)解的分类(通解、特解、奇解);4)线性微分方程的定义与分类(齐次/非齐次)。重点总结了一阶和高阶微分方程的求解方法,如可分离变量法、齐次方程变换、线性方程积分因子法等,并提供了各类方程的识别特征与解法映射表。文章还涉及微分方程的几何应用,为系统学习微分方程提供了清晰的知识框架。
2025-08-02 00:08:03
886
原创 第13讲—多元函数微分学
可见,二元函数的δ邻域在此表示一个圆,比一维的一段区间升维了。是xOy平面上的一个点,δ是某一正数。的距离小于δ的点的集合,称为点。
2025-07-17 13:35:47
718
原创 第10讲——一元函数积分学的几何应用
一共有两种方法,第一种方法是正常思路,但需利用题目中给出的等式条件;用三角形面积近似代替扇形的面积,然后求扇形面积之差就是曲边扇形的面积。还是微元法dA=2π|y|ds,这里的ds是指对应一段曲线的弧长。将圆柱壳沿着任何一条竖线剪开,可展开为一个“长方体”,其体积为。和上面的弧长一样,也是分为平面直角坐标系、参数方程、极坐标系。的任一条垂线与L至多有一个交点,如下图所示,则L绕。用矩形的面积,近似代替曲边梯形的面积。微元法,将其看作是小圆柱体的“积分”。柱壳法,将其看成是圆柱壳的“积分”。
2025-07-12 23:49:17
1097
原创 第12讲—一元函数积分学的物理应用
功的微元dW=ρgxA(x)dx为位于x处厚度为dx,水平截面面积为A(x)的一层水被抽出(路程为x)所做的功。物体从a点移动到b点时,变力F(x)所做的功。如右图所示,将容器中的水全部抽出所做的功为。,其中ρ为水的密度,g为重力加速度。其中ρ为水的密度,g为重力加速度。求解方法:找到功的微元→积分。
2025-07-10 21:20:36
608
原创 高等数学常考图形
定义:一个圆沿一直线无滑动地滚动,则圆上一固定点所经过的轨迹称为摆线。这种曲线的产生机制源自于圆在直线上的滚动,这种滚动方式使得圆周上的一个固定点沿着一条特定的轨迹移动,从而形成了摆线。定义:一个动圆外切于一个定圆无滑动地滚动时,动圆圆周上的一点p所描绘的点的轨迹称为外摆线(两圆半径相等时即心形线)。首先这是一个具有周期性的图像,横坐标上一个周期的长度是2πa,对应三角函数的周期2π,所以我们只需要画它的。定义:一个动圆内切于一个定圆作无滑动的滚动,动圆圆周上一个定点的轨迹叫做内摆线。
2025-07-10 12:24:43
1706
原创 Latex基本语法(自用)
Ε: \Epsilon(但通常直接用 E)Ο: \Omicron(但通常直接用 O)ρ: \rho, \varrho(变体)Α: \Alpha(但通常直接用 A)Β: \Beta(但通常直接用 B)Κ: \Kappa(但通常直接用 K)Ζ: \Zeta(但通常直接用 Z)Ι: \Iota(但通常直接用 I)Η: \Eta(但通常直接用 H)Ρ: \Rho(但通常直接用 P)Τ: \Tau(但通常直接用 T)Χ: \Chi(但通常直接用 X)Μ: \Mu(但通常直接用 M)Ν: \Nu(但通常直接用 N)
2025-07-07 23:15:29
560
原创 第五讲—一元函数积分学
可以看出,微分/求导后变简单的函数宜取作u,积分后简单些的函数宜取作v。核心思想:将积分表达式中的一部分组合成某个函数的微分形式即d(u(x)),从而将原积分转化为对中间变量u的积分。凑微分法的本质是逆向链式法则,也就是复合函数求导的逆运算,适用于那些一眼就能看出来的积分。①常用的三角函数代换—当被积函数含有如下根式时,可作三角函数代换,这里a大于0。③倒代换:当被积函数分母的幂次比分子高两次及两次以上时,做倒代换,令t=1/x。的乘积在积分时,通过分部积分会循环出现自身形式,形成方程。
2025-07-06 11:11:05
897
原创 2011年英语一
错了两道题目,一道题目是阅读题目对应段落时少翻译了一段重要信息,我选择的干扰选项正好利用了这个漏洞,剩下的两个干扰选项是无中生有,文章中压根没有依据。这题选A,需要重点阅读最后一段,并且读懂全文作者的观点:如果不改变和新听众之间的关系,就难以振兴乐团,也就是质疑吉尔伯特在振兴纽约爱乐乐团中的作用。这篇文章看似简单其实有些难度,这篇文章以热议事件开题,引出作者的看法,指出美国人听古典音乐会的传统习俗已陷入危机——音乐录音对现场演奏产生了冲击。
2025-07-03 21:04:59
481
原创 计算机网络第一章——计算机网络体系结构
本文摘要: 计算机网络基础概念包括网络、互联网和因特网的区别,以及由边缘主机和核心路由器组成的网络结构。三种交换方式各有特点:电路交换建立专用通路但效率低;报文交换存储转发但时延高;分组交换将数据分段传输,提高了效率。计算机网络的八大性能指标涵盖速率、带宽、吞吐量、时延等关键参数。分组交换网时延计算需考虑发送时延、传播时延、路由器数量等因素,公式为:总时延=分组数量×发送时延+传播时延+路由器数量×(发送时延+传播时延)。
2025-07-01 00:03:31
957
脑电情绪识别是通过分析脑电图(EEG)信号来解析人类情绪状态的前沿交叉学科 该技术利用头皮电极捕捉大脑神经元群的电生理活动,结合机器学习和深度学习算法,将特定的脑电波模式(如α波、β波、θ波的功率谱变
2025-06-05
基于脑电的情绪识别技术综述:从信号处理到应用前景
2025-04-14
conda.exe 是 Conda 包管理系统 在 Windows 平台上的核心可执行文件,它是 Anaconda/Miniconda 发行版的核心组件
2025-06-04
cudnn8.97的版本,适用于cuda11.x的版本
2024-07-05
深度学习中的.pth文件有什么作用?
2025-03-08
相联存储器可以按地址寻址吗?
2025-02-20
计算机组成原理第一章问题小结
2025-02-15
关于Java中的增强for循环
2025-01-26
在Java文件中一个源文件可以包含多个类吗?
2025-01-24
关于java中的继承
2025-01-21
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅