本周博客总结

最开始学acm是从dfs入门的,当时看题的时候就看到好多dfs题的题解都有dp的做法,这个周也终于有机会亲身领略一下dp了

但是dp和dfs的区别:做每走一步都是最优解,那么这样最优到头,就不存在像DFS一样回头找其它路径然后比对的过程了。

为了实现每走一步都是最优解,需要把一些数据进行预先比对,然后挑出最优解。

经典的01背包:

好多不一样重量和价值的物品要放入一个体积不变的背包,求最多放多少价值

最开始遇到这个问题,我想到贪心算法,但是贪心其实是不对的。因为动态规划思想就是解决子问题并记录子问题的解,这样就不用重复解决子问题了。

用一个数组f[i][j]表示,在只有i个物品,容量为j的情况下背包问题的最优解

我们得到状态转移方程:

f[i+1][j]=max(f[i][j],f[i][j-weight[i+1]+value[i+1])。

完全背包问题:

每个物品都有无限多件,往背包里面装东西,怎么装能使背包的内物品价值最大

通俗讲就是物品有无限多件。往背包里面添加物品时,只要当前背包没装满,可以一直添加。

那么状态转移方程为:

f[i+1][j]=max(f[i][j-k*weight[i+1]]+k*value[i+1]),其中0<=k<=V/weight[i+1]

多重背包问题:

给出一堆物品和一个背包,选择不同物品但是每种物品有限制的选择次数,求最多放多少价值.

与完全背包的区别在于,每一种物品是有个数限制的,不能无限选择

对于多重背包的问题,遵从01背包的策略,是选择放或者不放两个状态,但是每一种物品可以放最多num[i]个,因此可以转换为:实际上我们对于一个物品的选择就是放多少个的问题,最多放num[i]个的问题:

我们假设一种物品选择k个(除了背包本身重量限制,k还受到每一类物品数量num[i]的限制)

(1)选择放进去

如果选择放进去,还需要考虑放进去多少个,即

1, 2, 3, ···, k-1, k个且(0 < k && k * w[i] <= j && k <= num[i])

表示在上一个物品的状态的时候,我的当前背包重量j需要减去当前k个物品的重量k*w[i],并且整个背包的价值需要加上当前k个物品的价值k*v[i],则状态方程为:

# 0 < k && k * w[i] <= j && k <= num[i]

dp[i][j] = dp[i-1][j-k*w[i]] + k*v[i]

(2)选择不放进去

实际上如果选择不放进去的时候,表示放进去的是0个,需要减去的kw[i]和需要加上的kv[i]都为0选择不放进去的状态方程则为:

# dp[i][j] = dp[i-1][j-0*w[i]] + 0*v[i]

dp[i][j] = dp[i-1][j]

由此我们可以得到状态转移方程:

# 0 < k && k * w[i] <= j && k <= num[i]

dp[i][j] = max(dp[i-1][j-k*w[i]] + k*v[i], dp[i-1][j])

背包题很经典,虽然很难理解,但是深入学习后给我的dp算法思想了启蒙,剩下的就是看题了

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值