一、为什么需要树这样数据结构
1.数组存储方式分析
优点:通过下表方式访问元素,速度快。对于有序数组没还可以使用二分查找提高检索速度。
缺点:如果要检索某一个具体值,效率比较低下
2.链式存储方式分析
优点:在一定程度上对数组存储方式进行优化(比如插入一个节点,只需要将插入节点,链接到链表当中可删除的效率也很好)。
缺点:在进行检索时,效率仍然比较低,比如(检索某个数值,需要从头结点开始遍历)
3.树存储方式分析
能提高数据存储,读取的效率,比如利用二叉排序树,既可以保证数据的检索速度。同时也可以保证数据的插入,删除,修改的速度。
二、树示意图
三、二叉树的概念
1.树有很多种,每个节点最多只能有两个子节点的一种形式称为二叉树。
2.二叉树的子节点分为左节点和右节点。
3.如果二叉树的所有叶子节点都在最后一层并且总结点数 = 2^n-1,(n为层数),则我们称为满二叉数。
4.如果二叉树的所有叶子节点都在最后一层或者倒数第二层,而且最后一层的叶子节点在左边连续,倒数第二层的叶子节点在右边连续,我们称为完全二叉树。
四、二叉树的特点
五、二叉树的遍历说明
1.深度优先遍历:使用 前序,中序,和后序对下面的二叉树进行遍历
前序遍历:先遍历父节点,再遍历左子树,再遍历右子树。
A B D H I E C F G
中序便利:先遍历左子树,再遍历父节点,再遍历右子树。
H D I B E A F C G
后续遍历:先遍历左子树,再遍历右子树,最后遍历父节点。
H I D E B F G C A
小结:看父节点的输出顺序,就能确定是前序,中序还是后序遍历
2.广度优先遍历
从上往下打印出二叉树的每个结点,同一层的结点按照从左到右的顺序打印。
广度优先遍历需要用到先进先出的队列辅助
当结点从队列中pop出来打印的时候,把结点的左子树和右子树根结点push进入队列,这样能够保证同一个深度的结点在队列中连续排布。