树--结构基础部分分析

一、为什么需要树这样数据结构

1.数组存储方式分析

优点:通过下表方式访问元素,速度快。对于有序数组没还可以使用二分查找提高检索速度。

缺点:如果要检索某一个具体值,效率比较低下

2.链式存储方式分析

优点:在一定程度上对数组存储方式进行优化(比如插入一个节点,只需要将插入节点,链接到链表当中可删除的效率也很好)。

缺点:在进行检索时,效率仍然比较低,比如(检索某个数值,需要从头结点开始遍历)

3.树存储方式分析

能提高数据存储,读取的效率,比如利用二叉排序树,既可以保证数据的检索速度。同时也可以保证数据的插入,删除,修改的速度。

二、树示意图

三、二叉树的概念

1.树有很多种,每个节点最多只能有两个子节点的一种形式称为二叉树。

2.二叉树的子节点分为左节点和右节点。

3.如果二叉树的所有叶子节点都在最后一层并且总结点数 = 2^n-1,(n为层数),则我们称为满二叉数。

4.如果二叉树的所有叶子节点都在最后一层或者倒数第二层,而且最后一层的叶子节点在左边连续,倒数第二层的叶子节点在右边连续,我们称为完全二叉树。

四、二叉树的特点

五、二叉树的遍历说明

1.深度优先遍历:使用 前序,中序,和后序对下面的二叉树进行遍历

前序遍历:先遍历父节点再遍历左子树,再遍历右子树。

A B D H I E C F G

中序便利:先遍历左子树,再遍历父节点,再遍历右子树。

H D I B E A F C G

后续遍历:先遍历左子树,再遍历右子树,最后遍历父节点。

H I D E B F G C A

小结:看父节点的输出顺序,就能确定是前序,中序还是后序遍历

2.广度优先遍历

从上往下打印出二叉树的每个结点,同一层的结点按照从左到右的顺序打印。

广度优先遍历需要用到先进先出的队列辅助

当结点从队列中pop出来打印的时候,把结点的左子树和右子树根结点push进入队列,这样能够保证同一个深度的结点在队列中连续排布。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Beau Wang

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值