2024数学分析【南昌大学】

  1. 计算极限 lim ⁡ n → ∞ 2024 n ( 1 − cos ⁡ 1 n 2 ) n 3 1 + n 2 − n \mathop {\lim }\limits_{n \to \infty } \frac{ {\sqrt[n]{ {2024}}\left( {1 - \cos \frac{1}{ { {n^2}}}} \right){n^3}}}{ {\sqrt {1 + {n^2}} - n}} nlim1+n2 nn2024 (1cosn21)n3

    lim ⁡ n → ∞ 2024 n ( 1 − cos ⁡ 1 n 2 ) n 3 1 + n 2 − n = lim ⁡ n → ∞ 1 2 ( 1 n 2 ) 2 n 3 ( 1 + n 2 + n ) 1 lim ⁡ n → ∞ 2024 n = 1 \begin{align*} \lim_{n \to \infty} \frac{\sqrt [n]{2024} \left( 1 - \cos \frac{1}{n^2} \right) n^3}{\sqrt{1 + n^2} - n} &= \lim_{n \to \infty} \frac{\frac{1}{2} \left( \frac{1}{n^2} \right)^2 n^3 \left( \sqrt{1 + n^2} + n \right)}{1} \lim_{n \to \infty} \sqrt [n]{2024} \\ &= 1 \end{align*} nlim1+n2 nn2024 (1cosn21)n3=nlim121(n21)2n3(1+n2 +n)nlimn2024 =1

  2. 计算定积分 ∫ 0 π cos ⁡ 2 x e x   d x \int_0^\pi \cos^2 x e^x \, \mathrm{d}x 0πcos2xexdx

    ∫ 0 π cos ⁡ 2 x e x   d x + ∫ 0 π sin ⁡ 2 x e x   d x = ∫ 0 π e x   d x = e π − 1 ∫ 0 π cos ⁡ 2 x e x   d x − ∫ 0 π sin ⁡ 2 x e x   d x = ∫ 0 π cos ⁡ 2 x e x   d x = ( k 1 cos ⁡ 2 x + k 2 sin ⁡ 2 x ) e x ∣ 0 π \begin{align*} \int_0^\pi \cos^2 x e^x \, \mathrm{d}x + \int_0^\pi \sin^2 x e^x \, \mathrm{d}x &= \int_0^\pi e^x \, \mathrm{d}x \\ &= e^\pi - 1 \\ \int_0^\pi \cos^2 x e^x \, \mathrm{d}x - \int_0^\pi \sin^2 x e^x \, \mathrm{d}x &= \int_0^\pi \cos 2x e^x \, \mathrm{d}x \\ &= \left( k_1 \cos 2x + k_2 \sin 2x \right) e^x \bigg|_0^\pi \end{align*} 0πcos2xexdx+0πsin2xexdx0πcos2xexdx0πsin2xexdx=0πexdx=eπ1=0πcos2xexdx=(k1cos2x+k2sin2x)ex 0π

    由方程组 k 1 + 2 k 2 = 1 {k_1} + 2{k_2} = 1 k1+2k2=1 k 2 − 2 k 1 = 0 {k_2} - 2{k_1} = 0 k22k1=0 可得 k 1 = 1 5 {k_1} = \frac{1}{5} k1=51 k 2 = 2 5 {k_2} = \frac{2}{5} k2=52

    ( 1 5 cos ⁡ 2 x + 2 5 sin ⁡ 2 x ) e x ∣ 0 π = 1 5 ( e π − 1 ) \begin{align*} \left( \frac{1}{5} \cos 2x + \frac{2}{5} \sin 2x \right) e^x \bigg|_0^\pi &= \frac{1}{5} \left( e^\pi - 1 \right) \end{align*} (51cos2x+52sin2x)ex 0π=51(eπ1)

    故原式为 3 5 ( e π − 1 ) \frac{3}{5} \left( e^\pi - 1 \right) 53(eπ1)

  3. 计算曲线积分
    ∮ C y 1 + x 2   d x + ( 4 x + ln ⁡ ( x + 1 + x 2 ) )   d y \oint_C \frac{y}{\sqrt{1 + x^2}} \, \mathrm{d}x + \left( 4x + \ln \left( x + \sqrt{1 + x^2} \right) \right) \, \mathrm{d}y C1+x2 ydx+(4x+ln(x+1+x2 ))dy

    其中曲线 C C C 为从 A ( 1 , 0 ) A(1,0) A(1,0) B ( − 1 , 0 ) B(-1,0) B(1,0) 的上半圆周,方向为逆时针。

    上半圆周

    ∮ C y 1 + x 2   d x + ln ⁡ ( x + 1 + x 2 )   d y = ∮ C 4 x   d y = ∫ 0 π 4 cos ⁡ 2 θ   d θ = ∫ 0 π 2 ( cos ⁡ 2 θ + 1 )   d θ = 2 π \begin{align*} \oint_C \frac{y}{\sqrt{1 + x^2}} \, \mathrm{d}x + \ln \left( x + \sqrt{1 + x^2} \right) \, \mathrm{d}y &= \oint_C 4x \, \mathrm{d}y \\ &= \int_0^\pi 4 \cos^2 \theta \, \mathrm{d}\theta \\ &= \int_0^\pi 2 \left( \cos 2\theta + 1 \right) \, \mathrm{d}\theta \\ &= 2\pi \end{align*} C1+x2 ydx+ln(x+1+x2 )dy=C4xdy=0π4cos

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

星辰之光.

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值