Android 9(1),android实战mysql

本文介绍了Android 9.0中的新特性,如Slices和App Actions,这两种功能旨在提高用户参与度和操作便捷性。Slices允许应用内容在多个场景中以高互动形式展示,而App Actions则通过机器学习分析应用的语义意图,为用户提供适时的推荐。此外,还提到了Android 9.0在文本识别、神经网络API、人机交互、通知智能回复等方面的重要更新。
摘要由CSDN通过智能技术生成

Slices

Slices 能够有效帮助用户节省操作时间,不需要通过全屏体验就能够使用应用的部分功能。借助配套的 UI 模板,Slices 能够将应用内容以高动态、富交互的形式插入到多个使用场景中,比如 Google Search 和 Assistant。请进一步了解如何在应用中构建 Slices。

>> 构建 Slices

https://developer.android.google.cn/guide/slices/

App Actions

App Actions 是一种全新的应用推荐方式。开发者可以利用这个功能,让更多人看到自己的应用并极大提高用户参与度。借助机器学习技术,App Actions 能对应用的语义意图和使用场景进行分析,并根据分析结果在适当的时机向用户推荐您的应用。

我们将在接下来几周内公布具体操作细节,帮助开发者了解如何在应用内处理一个或多个用户意图。一旦应用启用该推荐功能后,系统就会根据用户请求,在众多 Google 和 Android 交互入口推荐您的应用。

>> App Actions

http://developer.android.google.cn/guide/actions/

文本识别与 Smart Linkify

在 Android 9 中,我们对识别文本的机器学习模型进行了扩展,使其可以借助 TextClassifier API识别出类似日期或航班号这样的信息。此外, Smart Linkify 允许开发者通过 Linkify API 使用文本识别模块完成多项操作,比如对用户可采取的操作提出建议。Smart Linkify 让系统在文本识别精确度与速度上都有明显的提升。

>> TextClassifier API

https://developer.android.google.cn/reference/android/view/textclassifier/package-summary

>> Linkify API

https://developer.android.google.cn/reference/android/text/util/Linkify

神经网络 API 1.1

Android 9.0 对神经网络 API 进行了扩展与改进,进一步优化 Android 对机器学习硬件加速的支持。神经网络 API 1.1 共增加了对 9 个新算子的支持,它们分别是 Pad、BatchToSpaceND、SpaceToBatchND、Transpose、Strided Slice、Mean、Div、Sub 和 Squeeze。TensorFlow Lite 就是一个已经用上此 API 的典型机器学习框架。

>> 神经网络 API 1.1

https://developer.android.google.cn/ndk/guides/neuralnetworks/index.html

>> TensorFlow Lite

https://www.tensorflow.org/mobile/tflite/

人机交互,就是这么容易

“让智能手机更加智能” 是我们向前迈进的重要一步。但是,如何把握好用户与科技的关系 —— 让科技以人为先,这一点也同样关键。在 An

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值