目录
题目描述
爱丽丝要完成一项修剪灌木的工作。
有 N 棵灌木整齐的从左到右排成一排。
爱丽丝在每天傍晚会修剪一棵灌木,让灌木的高度变为 0 厘米。
爱丽丝修剪灌木的顺序是从最左侧的灌木开始,每天向右修剪一棵灌木。
当修剪了最右侧的灌木后,她会调转方向,下一天开始向左修剪灌木。
直到修剪了最左的灌木后再次调转方向。
然后如此循环往复。
灌木每天从早上到傍晚会长高 1 厘米,而其余时间不会长高。
在第一天的早晨,所有灌木的高度都是 0 厘米。爱丽丝想知道每棵灌木最高长到多高。
输入格式
一个正整数 N,含义如题面所述。
输出格式
输出 N 行,每行一个整数,第行表示从左到右第 i 棵树最高能长到多高。
数据范围
对于 30% 的数据,N ≤ 10,
对于 100% 的数据,1 < N ≤ 10000。
输入样例
3
输出样例
4
2
4
题解
思路:
思维题
考虑当前修剪至第i个灌木,当前高度为0
1、如果当前向右修剪,那么经过i+1,i+2,⋅⋅⋅n−1,n后掉转方向,再经过n−1,n−2,⋅⋅⋅i+1, i回到第i个灌木,共经过2∗(n−i)次
2、如果当前向左修剪,那么经过i−1,i−2,⋅⋅⋅2,1后调转方向,再经过2,3⋅⋅⋅i−1,i回到第i个灌木,共经过2∗(i−1)次
那么最后的答案就是max(2(i−1),2(n−i))
图解:
#include<bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
for (int i = 1; i <= n; i ++)
cout << max (2 * (n - i), 2 * (i - 1)) << endl;
return 0;
}