目录
题目描述
进制规定了数字在数位上逢几进一。
X 进制是一种很神奇的进制,因为其每一数位的进制并不固定!
例如说某种 X 进制数,最低数位为二进制,第二数位为十进制,第三数位为八进制,则 XX 进制数 321321 转换为十进制数为 65。
现在有两个 X 进制表示的整数 A 和 B,但是其具体每一数位的进制还不确定,只知道 A 和 B 是同一进制规则,且每一数位最高为 N 进制,最低为二进制。
请你算出 A−B 的结果最小可能是多少。
请注意,你需要保证 A 和 B 在 X 进制下都是合法的,即每一数位上的数字要小于其进制。
输入格式
输出格式
输出一行一个整数,表示 X 进制数 A−B 的结果的最小可能值转换为十进制后再模 1000000007 的结果。
数据范围
输入样例
11
3
10 4 0
3
1 2 0
输出样例
94
样例解释
当进制为:最低位 2 进制,第二数位 5 进制,第三数位 11 进制时,减法得到的差最小。
此时 A 在十进制下是 108,B 在十进制下是 14,差值是 94。
题解
思路:
贪心 进位制
X 进制:
平时我们所说的10进制数是怎么得出来的呢?
比如10进制数 123: 它是由百位上的1 * 10 * 10 加上 十位上的 2 * 10 加上 个位上的 3 得出来的
关于x进制转10进制:
比如题目中给的:11进制(10)、5进制(4)、2进制(0)
对于i位上的数字num[i],转换为十进制就是num[i]*低于i位所有位的进制
就是10*5*2+4*2+0=108
再比如:11进制(1)、5进制(2)、2进制(0)
就是1*5*2+2*2+0=14
题目要求: X 进制下 A - B 的最小值只需 A B 对应数位上的数字取得其合法的最小进位制即可
图解:
#include <bits/stdc++.h>
using namespace std;
const int N = 1e5 + 10, MOD = 1000000007;
typedef long long ll;
int n, m1, m2, m;
int a[N], b[N];
int main() {
cin >> n;
cin >> m1;
for (int i = m1 - 1; i >= 0; i --) cin >> a[i]; // 逆序存储,a[0]存储个位,a[1]存储十位
cin >> m2;
for (int i = m2 - 1; i >= 0; i --) cin >> b[i];
int m = max(m1, m2);
int res = 0;
for (int i = m - 1; i >= 0; i --)
res = (res * (ll)max({2, a[i] + 1, b[i] + 1}) + a[i] - b[i]) % MOD;
cout << (res + MOD) % MOD;
return 0;
}