蓝桥杯13届(2022)省赛 C/C++ B组 E:X 进制减法

目录

题目描述

输入格式

输出格式

数据范围

输入样例

输出样例

样例解释

题解

思路:


题目描述

进制规定了数字在数位上逢几进一。

X 进制是一种很神奇的进制,因为其每一数位的进制并不固定!

例如说某种 X 进制数,最低数位为二进制,第二数位为十进制,第三数位为八进制,则 XX 进制数 321321 转换为十进制数为 65。

现在有两个 X 进制表示的整数 A 和 B,但是其具体每一数位的进制还不确定,只知道 A 和 B 是同一进制规则,且每一数位最高为 N 进制,最低为二进制。

请你算出 A−B 的结果最小可能是多少。

请注意,你需要保证 A 和 B 在 X 进制下都是合法的,即每一数位上的数字要小于其进制。

输入格式

输出格式

输出一行一个整数,表示 X 进制数 A−B 的结果的最小可能值转换为十进制后再模 1000000007 的结果。

数据范围

 

输入样例

11
3
10 4 0
3
1 2 0

输出样例

94

样例解释

当进制为:最低位 2 进制,第二数位 5 进制,第三数位 11 进制时,减法得到的差最小。

此时 A 在十进制下是 108,B 在十进制下是 14,差值是 94。

题解

思路:

贪心 进位制

X 进制:

平时我们所说的10进制数是怎么得出来的呢?
比如10进制数 123: 它是由百位上的1 * 10 * 10 加上 十位上的 2 * 10 加上 个位上的 3 得出来的


关于x进制转10进制:
比如题目中给的:11进制(10)、5进制(4)、2进制(0)
                             对于i位上的数字num[i],转换为十进制就是num[i]*低于i位所有位的进制
                             就是10*5*2+4*2+0=108
              再比如:11进制(1)、5进制(2)、2进制(0)        
                             就是1*5*2+2*2+0=14


题目要求: X 进制下 A - B 的最小值  

只需 A B 对应数位上的数字取得其合法的最小进位制即可

图解:

 

#include <bits/stdc++.h>
using namespace std;

const int N = 1e5 + 10, MOD = 1000000007;
typedef long long ll;

int n, m1, m2, m;
int a[N], b[N];

int main() {
    cin >> n;
    cin >> m1;
    for (int i = m1 - 1; i >= 0; i --) cin >> a[i]; // 逆序存储,a[0]存储个位,a[1]存储十位
    cin >> m2;
    for (int i = m2 - 1; i >= 0; i --) cin >> b[i];

    int m = max(m1, m2);

    int res = 0;
    for (int i = m - 1; i >= 0; i --) 
        res = (res * (ll)max({2, a[i] + 1, b[i] + 1}) + a[i] - b[i]) % MOD;

    cout << (res + MOD) % MOD;    
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

.lby.

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值