floyd本质 最小环 恰好经过N条边 倍增

#include <iostream>
#include<cstring>
using namespace std;
const int N = 102, M = 2e4 + 2;
int h[N], e[M], ne[M], w[M], idx;
int path[N], pos[N][N], g[N][N], dist[N][N];
int cnt;

void add(int a, int b, int c) {
	e[idx] = b, w[idx] = c, ne[idx] = h[a], h[a] = idx++;
}

void get_path(int i, int j) {
	if (pos[i][j] == 0)     //说明是直接到达
		return;
	int k = pos[i][j];
	get_path(i, k);
	path[cnt++] = k;
	get_path(k, j);
}

int main() {
	int n, m, i, j, k, u, v, l;
	cin >> n >> m;
	memset(g, 0x3f, sizeof g);
	for (i = 0; i <= n; i++)
		g[i][i] = 0;
	while (m--) {
		cin >> u >> v >> l;
		g[u][v] = g[v][u] = min(g[u][v], l);
	}
	memcpy(dist, g, sizeof g);   //是在dist上更新
	int res = 1e9;
	for (k = 1; k <= n; k++) {    //floyd是用邻接矩阵! 因为要随时查找w[i][k]和w[k][j]的值
		for (i = 1; i <= k; i++) {
			for (j = i + 1; j < k; j++) {
				if (res > (long long)dist[i][j] + g[i][k] + g[k][j]) {
					res = dist[i][j] + g[i][k] + g[k][j];
					cnt = 0;
					path[cnt++] = k;
					path[cnt++] = i;
					get_path(i, j);
					path[cnt++] = j;
				}
			}
		}
		for (i = 1; i <= n; i++)
			for (j = 1; j <= n; j++) {
				if (dist[i][j] > dist[i][k] + dist[k][j]) {
					pos[i][j] = k;
					dist[i][j] = dist[i][k] + dist[k][j];
				}
			}
	}
	if(res==1e9) cout<<"No solution.";
	else{
	    for(i=0;i<cnt;i++) cout<<path[i]<<" ";
	}
}

此外 换种方法定义 f[k][i][j]三维是表示经过k条边的最短路径 用快速幂 复杂度为n^{3}logk

这样有负环也可以求出最小路径 因为经过的边数是有限制的

因为可以重复经过 i到k经过a条边 k到j经过b条边 是无影响的 就算k到j经过的边在i到k的时候可能经过了 但是题目条件是允许的 所以互相独立也就有结合律 故可以用快速幂

 

 

#include <iostream>
#include <map>
#include<cstring>
using namespace std;
const int N = 202;    //最多两百个点 离散化
map<int, int> mp;
int m, n, t, s, e;
int res[N][N], g[N][N];

int get(int x) {
	if (!mp.count(x)) 
		mp[x] = ++m;   //最大编号是m
	return mp[x];
}

void l_floyd(int c[][N], int a[][N], int b[][N]) { //是得到2条边+2条边==经过4条边的最短dsit
	int i, j, k;
	int temp[N][N];
	memset(temp, 0x3f, sizeof temp);  //一定要初始化INF
	for (k = 1; k <= m; k++) {
		for (i = 1; i <= m; i++) {
			for (j = 1; j <= m; j++) {     //可以等于m
				temp[i][j] = min(temp[i][j], a[i][k] + b[k][j]);
			}
		}
	}
	memcpy(c, temp, sizeof temp);
}

void double_add() {
	memset(res, 0x3f, sizeof res);
	for (int i = 1; i <= m; i++)
		res[i][i] = 0;
	while (n) {
		if (n & 1)
			l_floyd(res, res, g);
		l_floyd(g, g, g);
		n >>= 1;
	}
}

int main() {
	int m = 0;
	cin >> n >> t >> s >> e; //恰好经过n条边 有t条边 起点s 终点e
	s = get(s), e = get(e);
	memset(g,0x3f,sizeof g);
	int l, u, v, i, j, k;
	while (t--) {
		scanf("%d%d%d", &l, &u, &v);
		u = get(u), v = get(v);
		g[u][v] = g[v][u] = min(g[u][v], l);
	}
	double_add();
	cout << res[s][e];
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值