作者:韩童 西安工业大学
摘要
利用GAN生成对抗网络,进行超分辨图像网络重建,减少纹理缺失以及纹理过多问题,同时解决引入GAN导致的一些问题。
- 图像超分辨率多层次特征融合神经网络算法
解决网络模型只有一种特征提取方式和提取重要特性不足的缺点,图片特征提取,全局信息提取等不足。
优化GAN生成器提取特征结构,将原有模块替换为残差模块,残差连接允许引入更深层次的网络结构,同时减轻梯度消失或梯度爆炸的风险。此外,残差学习框架有助于剔除无关的噪声,实现更全面的特征捕捉,最终得到更高质量的超分辨率图像。
- 基于深度学习生成对抗网络区域分辨网络模块
解决平滑区域生成太多细节与纹理,影响图片的效果。
区别对待平滑区域与复杂区域,分割提取,区别训练。
加入注意力机制&