基于生成对抗网络图像超分辨率重建方法研究-文献阅读-3

基于生成对抗网络图像超分辨率重建方法研究

作者:韩童 西安工业大学

摘要

利用GAN生成对抗网络,进行超分辨图像网络重建,减少纹理缺失以及纹理过多问题,同时解决引入GAN导致的一些问题。

  • 图像超分辨率多层次特征融合神经网络算法

解决网络模型只有一种特征提取方式和提取重要特性不足的缺点,图片特征提取,全局信息提取等不足。

优化GAN生成器提取特征结构,将原有模块替换为残差模块,残差连接允许引入更深层次的网络结构,同时减轻梯度消失或梯度爆炸的风险。此外,残差学习框架有助于剔除无关的噪声,实现更全面的特征捕捉,最终得到更高质量的超分辨率图像。

  • 基于深度学习生成对抗网络区域分辨网络模块

解决平滑区域生成太多细节与纹理,影响图片的效果。

区别对待平滑区域与复杂区域,分割提取,区别训练。

加入注意力机制&

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值