自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(6)
  • 收藏
  • 关注

原创 模型中的bias和variance的理解

variance:相同分布的不同训练集训练出的模型的输出结果之间的差异,代表的是鲁棒性,直白说是一个模型面对不同输入数据的变化和扰动的稳定性。bias:单个模型的输出结果与该训练集的真实结果之间的差异,代表的是拟合能力,俗话可以说“准确度”不通过testing_data的输出结果去优化模型,而是通过valid_data的结果去优化模型。处理这种过拟合的方法之一:cross-validation(交叉验证)过拟合:训练误差小,测试误差大。即bias小,variance大。

2024-01-15 20:23:10 575 1

原创 动手学深度学习——等高线

等高线是连接地图上相同海拔高度的线。等高线的特点是连接相同海拔高度的点,因此沿着等高线行走,可以保持相同的海拔高度。比如f(x,y)=x*x+y*y,在平面上找到值为1的x和y的集合,就是一个圆上的点,所以说相同的函数值,x和y的取值可以有多种组合。在物理学、地理学和工程学等领域中,我们经常使用梯度来描述某一物理量的变化情况。梯度的等高线是连接梯度相等的点的线。函数的等高线是在函数的图像中,与函数取相同函数值的点形成的曲线或曲面。在学到梯度下降的时候,看到等高线的图形,发现自己不太懂等高线。

2023-10-31 17:30:06 246 1

原创 动手学深度学习——线性回归

batch_indices是一个取值从列表indices中的i开始,到min结束的一个张量,包含了当前批次的样本索引,min(i + batch_size, num_examples)表示为了防止最后一个批次的数目太小,达不到batch_size,所以取二者的最小值。w是一个2行1列的张量,requires_grad=True,这个参数告诉 PyTorch 需要跟踪对这个张量的操作,以便之后进行自动求导(autograd)。b是一个形状为(1,)的张量,这个的含义:一维张量,可以是1行或者1列。

2023-10-31 16:53:00 376 3

原创 动手学深度学习-线性代数

2. 若要保持求和之后的维度不会减少,则用:keepdims=True。torch.mv(A,x), 其中A的列维数与x的维数要相同。F范数:torch.norm(A,p='fro')1、张量求和sum(),求平均值mean()2范数:torch.norm(A,p=2)mean()用法同理:会减少张量的维度。如:A.shape(2,5,4)向量与向量的乘积:点积。

2023-10-31 16:22:46 58 1

原创 动手学深度学习——自动求导

答:这是因为y=x*x,此时y是一个矩阵,而在深度学习中,通常用标量对向量求梯度,而不是用矩阵对向量求梯度,所以接着使用y.sum()让y的每个元素求和,结果为一个标量,然后使用backward(),让y对x求梯度,即:对x的每一个元素求偏导数。这两种情况下,对于任何a,存在某个常量标量k,使得f(a)=k*a,其中k的值取决于输入a。4、为什么f(a)是相当于k*a,其中k是f(a)的梯度?这部分是分段的,因为输出取决于条件。作为常数处理, 求导结果是u,而不是。因此,整体而言,我们可以近似说,在。

2023-10-31 11:35:34 129 1

原创 动手学深度学习——数据预处理+缺失值处理

插入平均值时,出现报错情况,于是在mean括号中加入"numeric_only=True"默认按值分为几列,同时dummy_na=True表示用bool值(0/1)表示具体值。以上只有pave和NAN两种值,所以分为两列,同时pave用1表示,NAN用0表示。例子中:pd.get_dummies(inputs,dummy_na=True)2.缺失值处理:插值、删除。mode :权限模式。

2023-10-25 16:27:17 169 1

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除