bias:单个模型的输出结果与该训练集的真实结果之间的差异,代表的是拟合能力,俗话可以说“准确度”
variance:相同分布的不同训练集训练出的模型的输出结果之间的差异,代表的是鲁棒性,直白说是一个模型面对不同输入数据的变化和扰动的稳定性。
过拟合:训练误差小,测试误差大。即bias小,variance大。
处理这种过拟合的方法之一:cross-validation(交叉验证)
不通过testing_data的输出结果去优化模型,而是通过valid_data的结果去优化模型
bias:单个模型的输出结果与该训练集的真实结果之间的差异,代表的是拟合能力,俗话可以说“准确度”
variance:相同分布的不同训练集训练出的模型的输出结果之间的差异,代表的是鲁棒性,直白说是一个模型面对不同输入数据的变化和扰动的稳定性。
过拟合:训练误差小,测试误差大。即bias小,variance大。
处理这种过拟合的方法之一:cross-validation(交叉验证)
不通过testing_data的输出结果去优化模型,而是通过valid_data的结果去优化模型