模型中的bias和variance的理解

bias:单个模型的输出结果与该训练集的真实结果之间的差异,代表的是拟合能力,俗话可以说“准确度”

variance:相同分布的不同训练集训练出的模型的输出结果之间的差异,代表的是鲁棒性,直白说是一个模型面对不同输入数据的变化和扰动的稳定性。

过拟合:训练误差小,测试误差大。即bias小,variance大。

处理这种过拟合的方法之一:cross-validation(交叉验证)

不通过testing_data的输出结果去优化模型,而是通过valid_data的结果去优化模型

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值