目录
Rq4:在将LLMS应用于安全任务时,数据收集和预处理有什么不同?
概要
本文通过全面收集超过3万篇相关论文,并系统分析来自顶级安全和软件工程场所的127篇论文,旨在提供法学硕士如何用于解决网络安全领域各种问题的整体视图。通过分析,作者确定了几个关键发现:
- 首先,大模型正在广泛应用于网络安全任务,包括漏洞检测、恶意软件分析、网络入侵检测和网络钓鱼检测。
- 其次,这些任务中用于培训和评估法学硕士的数据集通常在规模和多样性上受到限制,这突出了对更全面和更具代表性的数据集的需求。
- 第三,确定了几种有前途的技术,使大模型适应特定的网络安全领域,如微调、迁移学习和特定领域的预训练。
- 最后,本文讨论了LLM4Security未来研究的主要挑战和机遇,包括对更多可解释和可解释模型的需求,解决数据隐私和安全问题的重要性,以及利用大模型进行主动防御和威胁搜索的潜力。

方法论
1.研究问题
- RQ1:基于大模型的方法促进了哪些类型的安全任务?
- RQ2:哪些大模型被用来支持安全任务?
- RQ3:哪些领域规范技术用于使大模型适应安全任务?
- RQ4:在将大模型应用于安全任务时,数据收集和预处理有什么不同方法和种类?
2.文献搜索策略
为了尽可能准确地收集和识别一组相关文献,本文采用“准黄金标准”(QGS)策略进行文献检索:
步骤1:确定相关来源和数据库
- 网络安全会议和期刊:S&P, NDSS, USENIX Security, CCS, TDSC和TIFS
- 软件工程会议和期刊:ICSE, ESEC/FSE, ISSTA, ASE, TOSEM和TSE
- 数据库:ACM数字图书馆, IEEE Xplore, Science Direct, Web of Science, Springer, Wiley和
- arXiv.
步骤2:建立QGS
作者识别出41篇与LLM4Sec相关的论文,涵盖了各种技术、应用领域和评估方法。
步骤3:定义搜索关键字
- LLM相关的关键词:大模型、LLM、语言模型、LM、预训练、CodeX、Llama、GPT-*、ChatGPT、T5、AIGC、AGI。
- 安全任务相关关键词:网络安全、Web安全、网络安全、系统安全、软件安全、数据安全、程序分析、程序修复、软件漏洞、CVE、CWE、漏洞检测、漏洞定位、漏洞分类、漏洞修复、软件漏洞、漏洞检测、漏洞定位、漏洞分类、漏洞报告、漏洞修复、安全操作、侵犯隐私、拒绝服务、数据中毒、后门、恶意软件检测、恶意软件分析、勒索软件、采购产品恶意命令,模糊测试,渗透测试,网络钓鱼,欺诈,诈骗,取证,入侵检测。
步骤4:执行自动搜索
作者自动搜索集中在2019年之后发表的论文,搜索结果如下:
- ACM数字图书馆:3398篇
- IEEE Xplore :2112篇
- Science Direct :724篇
- Web of Science :4445篇
- Springer :23721篇
- Wiley :7154篇
- arXiv :3557篇
3.研究选择
粗筛

在此人工检查阶段后,156篇论文被纳入进一步的质量评估中。
精筛
本文标准改编自软件工程中系统审查的现有指导方针:
- QAC1:研究目标和问题的清晰性和适当性;
- QAC2:方法和研究设计的充分性;
- QAC3:数据收集和分析过程的严谨性;
- QAC4:结果和结论的有效性;
- QAC5:报告和文件的彻底性。
经过质量评估,93篇论文保留在入选集中。