本题的要求很简单,就是求N
个数字的和。麻烦的是,这些数字是以有理数分子/分母
的形式给出的,你输出的和也必须是有理数的形式。
输入格式:
输入第一行给出一个正整数N
(≤100)。随后一行按格式a1/b1 a2/b2 ...
给出N
个有理数。题目保证所有分子和分母都在长整型范围内。另外,负数的符号一定出现在分子前面。
输出格式:
输出上述数字和的最简形式 —— 即将结果写成整数部分 分数部分
,其中分数部分写成分子/分母
,要求分子小于分母,且它们没有公因子。如果结果的整数部分为0,则只输出分数部分。
输入样例1:
5
2/5 4/15 1/30 -2/60 8/3
输出样例1:
3 1/3
输入样例2:
2
4/3 2/3
输出样例2:
2
import java.util.*;
public class Main {
public static long gcd(long n, long m) {
long t;
if(n < m) {
t = n;
n = m;
m = t;
}
long r = n % m;
while(r != 0) {
n = m;
m = r;
r = n % m;
}
return m;
}
public static void main(String [] args){
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
if(n != 0) {
long fz[] = new long[n];
long fm[] = new long[n];
long zsum = 0, m = 1;
for(int i = 0; i < n; i++) {
String fs = sc.next();
String[] split = fs.split("/");
fz[i] = Long.valueOf(split[0]);
fm[i] = Long.valueOf(split[1]);
m *= fm[i];
}
for(int i = 0; i < n; i++){
zsum = zsum + fz[i] * (m / fm[i]);
}
if(zsum != 0) {
long g = gcd(zsum, m);
if(g == m){
System.out.print(zsum / m);
}
else {
zsum = zsum / g;
m = m / g;
if(zsum > m){
System.out.printf("%d %d/%d", zsum / m, zsum % m, m);
}
else{
System.out.printf("%d/%d", zsum, m);
}
}
}
else{
System.out.print(0);
}
}
else{
System.out.print(0);
}
}
}