黑白棋子问题

文章介绍了在两人下黑白棋游戏中,如何通过信号量机制保证轮流下子的规则。在第一种情况下,黑棋先下,使用两个信号量bfg和wfg实现。在第二种情况,双方抢棋盘先下,引入互斥信号量m和标志变量fg,确保公平竞争和交替下棋。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

黑白棋子问题

1、问题描述

两个人下棋,一方执黑棋,一方执白棋。要求双方轮流下子。

给出两种情况的解决办法:
(1)执黑子一方先下。(2)双方都可以先下,谁先抢到棋盘谁先下。

2、解决

情况(1)

信号量:bfg=1,wfg=0

//注意信号量及初值的设置,保证黑方先下子且之后双方轮流下子。

seamphore bfg=1,wfg=0;
void main()
{
   black();
   white();
}
 
void black()
{
  while(true)
 {
    wait(bfg);//
    if whereput()
    {put a black qizi;}//下一黑棋
    else break;
    signal(wfg);//
 }
}
 
void white()
{
  while(true)
 {
    wait(wfg);//
    if whereput()
    {put a white qizi;}//下一白棋
    else break;
    signal(bfg);//
 }
}

情况(2)

争抢棋盘需要一个互斥信号m;加入if控制与标志判断。利用互斥信号量与特殊标志变量的结合使用实现有序控制。

下面给出两种实现方案。

方案一

在这里插入图片描述

方案二

在这里插入图片描述

seamphore bfg=1,wfg=0,m=1;
boolean fg=F;
void main()
{
     black();
      write();
}
void black()
{
      wait(m);
      if(!fg)
     {
         bfg=1;wfg=0;fg=T;
     }
     signal(m);
     while(true){
        wait(bfg);
       if whereput()
        {
           put a black qizi;
           signal(wfg);
        }else
         {
            signal(wfg);
            break;
         }
}
void white()
{
       wait(m);
       if(!fg)
       {
           bfg=0;wfg=1;
           fg=T;
        }
       signal(m);
       while(true){
            wait(wfg);
            put a white qizi;
             signal(bfg);
      }
}

来源1
来源2

### 使用OpenCV进行黑白棋子的图像识别 为了有效地区分黑白棋子,可以采用一系列基于计算机视觉的技术来处理图像。首先,考虑到围棋盘具有较为规则的几何形状,在尝试利用传统的方法如直线、圆形以及角点检测时遇到了挑战[^1]。然而,这并不意味着无法解决问题;实际上,可以通过更精细的方式来进行特征提取。 #### 图像预处理 在正式进入棋子识别前,先对原始图片做一些必要的预处理工作: - **色彩空间转换**:将输入RGB/BGR格式的颜色图像转变为HSV颜色模型,这样有助于后续操作中更好地分离目标对象与背景,并减少光照变化带来的影响[^3]。 ```python import cv2 import numpy as np image = cv2.imread('go_board.jpg') hsv_image = cv2.cvtColor(image, cv2.COLOR_BGR2HSV) ``` #### 棋子定位 接着执行圆检测算法以精确定位每一个可能存在的棋子位置。这里推荐使用Hough Circle Transform (霍夫圆变换),它能够有效地捕捉到圆形物体轮廓,即便存在部分遮挡也能保持较高的准确性。 ```python gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) blurred = cv2.GaussianBlur(gray, (9, 9), 0) circles = cv2.HoughCircles(blurred, method=cv2.HOUGH_GRADIENT, dp=1.2, minDist=20, param1=50, param2=30, minRadius=8, maxRadius=25) if circles is not None: detected_circles = np.uint16(np.around(circles)) for circle in detected_circles[0]: center_x, center_y, radius = circle # 绘制检测到的圆圈及其中心点 cv2.circle(image, (center_x, center_y), radius, (0, 255, 0), thickness=2) cv2.circle(image, (center_x, center_y), 2, (0, 0, 255), thickness=3) ``` #### 颜色分类 最后一步是对已定位好的各个棋子按照其颜色属性进行分类。鉴于已经完成了从BGR至HSV的空间映射,现在可以根据特定阈值范围筛选出属于黑色或白色的像素区域。 ```python lower_black = np.array([0, 0, 0]) upper_black = np.array([179, 255, 50]) # 调整这些参数直到满意为止 mask_black = cv2.inRange(hsv_image, lower_black, upper_black) lower_white = np.array([0, 0, 200]) upper_white = np.array([179, 30, 255]) mask_white = cv2.inRange(hsv_image, lower_white, upper_white) black_pieces = cv2.bitwise_and(image, image, mask=mask_black) white_pieces = cv2.bitwise_and(image, image, mask=mask_white) ``` 上述代码片段展示了如何应用OpenCV库中的函数完成黑白棋子的自动识别任务。值得注意的是,实际部署过程中还需要针对具体应用场景调整相关参数设置,比如滤波器大小、颜色区间界定等,从而达到最佳的效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

亖嘁

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值