北京/上海/武汉/深圳,数据仓库高级工程师,Obsidian Apps Support(射频开发)

Obsidian Apps Support(射频开发

行业:IT互联网大厂

坐标:深圳(优先)/上海,

职位标签:

RF方向,C++,Linux,RF域,射频测试设备开发经验,DSP技术

职位介绍:

支持新功能的开发/增强

支持测试周期和分类问题

在出现任何问题时为最终用户提供支持

规划和执行软件验证活动,包括规范审查,设计审查,代码审查,单元(白盒)测试,功能(黑盒)测试,集成测试,临时调试和硬件/软件接口测试

职位要求:

本科及以上学历

英语听说读写流利

3年以上嵌入式开发经验

熟悉C++,Linux,RF域

具有明确的自我管理优先级和工作可交付成果的能力

灵活,适应性强的心态,能够同时管理多个夹具设计

能够创建实用和创新的解决方案

薪酬福利:

六险一金全额缴纳,年假病假10天,子女险

数据仓库高级工程师:

行业:汽车制造

坐标:武汉/上海/北京

职位标签:

数据仓库,数据架构,ETL

职位介绍:


1、负责数仓通用能力的模型建设、包括但不限于BI平台、元数据、调度平台,并解决ETL优化等

相关技术问题;

2、较强的数据库及SQL能力,精通数据仓库的ETL开发,并对Hadoop技术体系有所了解和研究;

熟练掌握:mysql,hdfs/hive/数据库使用;通过shell、python等脚本语言编写程序进行数据清洗、

分类、入库:

3、运用数据挖掘/统计学习的理论和方法,深入挖掘和分析用户行为;

4、参与数据产品设计和评审,保障数据平台架构稳定健壮;

5、为职能体系及整车工程团队提供数据支特,并且在一定程度上给予评估和解决方案的建议:

6、跟踪并分析公司数据商业化产品相关数据。为产品创新、产品设计及产品优化提供数据支持依据。共同建立起商业智能分析工作的流程、规范和方法:

7、完成部门安排的其他数据相关工作和任务。
 

职位要求

1、计算机、数学、统计学相关专业,本科及以上学历

2、熟悉数据仓库的ETL的开发和数据建模,熟卷数据仓库各类建模理论,具备大型数据仓库架构

设计、模型设计和处理性能调优等相关经验,

3、具备数据敏感性和探知欲、分析、解决问题的能力,能够承受工作中的压力,专注数据的价值发现和变现转化

4、工作认真、负责、仔细,有良好的团队合作精神,良好的分析能力、沟通技巧

薪酬福利:

14-15薪资

上午9:30-下午6:30,双休,弹性工作

投递邮箱:

  • sxbjrmh6032@163.com

  • 邮件主题标明:姓名-应聘岗位+所在城市

  • 10
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
众所周知,人工智能是当前最热门的话题之一, 计算机技术与互联网技术的快速发展更是将对人工智能的研究推向一个新的高潮。 人工智能是研究模拟和扩展人类智能的理论与方法及其应用的一门新兴技术科学。 作为人工智能核心研究领域之一的机器学习, 其研究动机是为了使计算机系统具有人的学习能力以实现人工智能。 那么, 什么是机器学习呢? 机器学习 (Machine Learning) 是对研究问题进行模型假设,利用计算机从训练数据中学习得到模型参数,并最终对数据进行预测和分析的一门学科。 机器学习的用途 机器学习是一种通用的数据处理技术,其包含了大量的学习算法。不同的学习算法在不同的行业及应用中能够表现出不同的性能和优势。目前,机器学习已成功地应用于下列领域: 互联网领域----语音识别、搜索引擎、语言翻译、垃圾邮件过滤、自然语言处理等 生物领域----基因序列分析、DNA 序列预测、蛋白质结构预测等 自动化领域----人脸识别、无人驾驶技术、图像处理、信号处理等 金融领域----证券市场分析、信用卡欺诈检测等 医学领域----疾病鉴别/诊断、流行病爆发预测等 刑侦领域----潜在犯罪识别与预测、模拟人工智能侦探等 新闻领域----新闻推荐系统等 游戏领域----游戏战略规划等 从上述所列举的应用可知,机器学习正在成为各行各业都会经常使用到的分析工具,尤其是在各领域数据量爆炸的今天,各行业都希望通过数据处理与分析手段,得到数据中有价值的信息,以便明确客户的需求和指引企业的发展。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值