题目描述
小蓝有一个超大的仓库,可以摆放很多货物。
现在,小蓝有 n 箱货物要摆放在仓库,每箱货物都是规则的正方体。小蓝规定了长、宽、高三个互相垂直的方向,每箱货物的边都必须严格平行于长、宽、高。
小蓝希望所有的货物最终摆成一个大的长方体。即在长、宽、高的方向上分别堆 L、W、H 的货物,满足 n=L×W×H。
给定 n,请问有多少种堆放货物的方案满足要求。
例如,当 n=4 时,有以下 6种方案:1×1×4、1×2×2、1×4×1、2×1×2、2×2×1、4×1×1
请问,当 n=2021041820210418 (注意有 16 位数字)时,总共有多少种方案?
提示:建议使用计算机编程解决问题。
答案提交
这是一道结果填空的题,你只需要算出结果后提交即可。本题的结果为一个整数,在提交答案时只填写这个整数,填写多余的内容将无法得分。
运行限制
最大运行时间:1s
最大运行内存: 256M
这道题主要的问题就是运行次数太多,计算机要很长的事件才能完成操作,一般的暴力做法会需要三个循环操作,操作次数会变成n的3次方,
太多了,所以这里只用两个循环确定两个数就可以确定第三个数了。
而这道题本身是一道填空题,只需要输出答案正确就行了,直接cout<<"2430";就行
#include<iostream>
using namespace std;
int main()
{/*这道题主要的问题就是运行次数太多,计算机要很长的事件才能完成操作,一般的暴力做法会需要三个循环操作,操作次数会变成n的3次方,
太多了,所以这里只用两个循环确定两个数就可以确定第三个数了。
而这道题本身是一道填空题,只需要输出答案正确就行了,直接cout<<"2430";就行
*/
long long n,sum=0;
long long l,w,h;
sum=0;
n=2021041820210418;
for(l=1;l*l*l<=n;l++){//l的限制条件是log3n,
if(n%l==0){
for(w=l;l*w*w<=n;w++){//w的限制条件是一定要比l大,不然会有重复
if(n/l%w==0){
h=(n/l)/w;
if(l==w&&w==h){
sum++;
sum-=3;//这里是因为如果真的出现了一个数可以满足l*l*l=n,那么这个组合也会满足下面+3的条件,故要-3
}
if(l == w || w == h || l == h){
sum+=3;
}
if(l!=w&&w!=h&&l!=h){
sum+=6;
}
}
}
}
}
cout<<sum;
return 0;
}