感谢阅读!❤️
如果这篇文章对你有帮助,欢迎 **点赞** 👍 和 **关注** ⭐,获取更多实用技巧和干货内容!你的支持是我持续创作的动力!
**关注我,不错过每一篇精彩内容!**
一、归并排序的算法思路
归并排序(Merge Sort)是一种基于分治策略(Divide and Conquer)的排序算法,其核心思想是将数组不断分割为更小的子数组,直到子数组长度为1(天然有序),然后通过归并操作将有序的子数组合并为一个完整的有序数组。
二、算法步骤
-
划分阶段(Divide)
- 递归分割:将待排序的数组从中间位置
mid = (left + right) / 2
分为左右两个子数组。 - 递归终止条件:当子数组长度为
1
时,递归终止,因为单个元素默认有序。 - 递归排序:分别对左右子数组递归执行归并排序。
- 递归分割:将待排序的数组从中间位置
-
合并阶段(Conquer)
- 归并操作:将两个已排序的子数组合并为一个有序数组。
- 申请临时空间:创建一个大小为
right - left + 1
的临时数组temp
。 - 双指针比较:使用两个指针分别指向左右子数组的起始位置,逐个比较元素,将较小的元素放入
temp
中,并移动指针。 - 剩余元素处理:当某一子数组的所有元素被遍历完后,将另一子数组的剩余元素直接复制到
temp
中。 - 覆盖原数组:将
temp
中的有序元素复制回原数组的对应位置。
三、示例数组排序过程
数组:
[5, 8, 5, 2, 9]
的排序过程
- 第一步,将数组从中间分开
[5, 8, 5, 2, 9]
→[5, 8, 5]
和[2, 9]
- 第二步:继续拆分左右子数组
[5, 8, 5]
→[5, 8]
和[5]
,
[5, 8]
→[5]
和[8]
[2, 9]
→[2]
和[9]
- 第三步:合并单个元素的数组
- 合并
[5]
和[8]
:[5] + [8] → [5, 8]
- 合并
[5, 8]
和[5]
:[5, 8] + [5] → [5, 5, 8]
- 合并
[2]
和[9]
:[2] + [9] → [2, 9]
- 合并
[5, 5, 8]
和[2, 9]
:[5, 5, 8] + [2, 9] → [2, 5, 5, 8, 9]
四、代码实现
import java.util.Arrays;
public class MergeSort {
public static void main(String[] args) {
//测试代码
int[] arr = {5, 8, 5, 2, 9};
mergeSort(arr);
System.out.println(Arrays.toString(arr));
}
public static void mergeSort(int[] array) {
int[] temp = new int[array.length]; // 辅助数组
mergeSort(array, 0, array.length - 1, temp);
}
private static void mergeSort(int[] arr, int left, int right, int[] temp) {
if (left >= right) return;
//求中点值
int mid = (left + right) >>> 1; // 防止整数溢出
// 递归排序左半部分
mergeSort(arr, left, mid, temp);
// 递归排序右半部分
mergeSort(arr, mid + 1, right, temp);
// 合并两个有序子数组
merge(arr, left, mid, right, temp);
}
private static void merge(int[] arr, int left, int mid, int right, int[] temp) {
// 将原数组的 [left...right] 复制到辅助数组中
System.arraycopy(arr, left, temp, left, right - left + 1);
int i = left; // 指向左半部分的起始位置
int j = mid + 1; // 指向右半部分的起始位置
int k = left; // 指向原数组中待填充的位置
// 合并两个有序数组
while (i <= mid && j <= right) {
if (temp[i] <= temp[j]) {
arr[k++] = temp[i++];
} else {
arr[k++] = temp[j++];
}
}
// 处理剩余元素
while (i <= mid) {
arr[k++] = temp[i++];
}
while (j <= right) {
arr[k++] = temp[j++];
}
}
}
五、时间复杂度分析
时间复杂度:最坏/平均/最好:
O(n log n)
-
递归深度
每次递归将数组划分为两半,递归深度为log n
层(n
为数组长度)。 -
每层操作时间
合并操作:每层递归中,所有子数组的合并总时间复杂度为O(n)
。例如,若数组长度为n
,每层合并需要遍历所有n
个元素。 -
总时间复杂度
最坏/平均/最好情况:归并排序的时间复杂度始终为O(n log n)
。
- 数学推导:根据主定理(Master Theorem),归并排序的递归公式为:
T ( n ) = 2 T ( n 2 ) + O ( n ) T(n) = 2T\left(\frac{n}{2}\right) + O(n) T(n)=2T(2n)+O(n)
其中, 2 T ( n 2 ) 2T\left(\frac{n}{2}\right) 2T(2n) 表示递归处理左右子数组, O ( n ) O(n) O(n) 表示合并操作。根据主定理的第二种情况,解得:
T ( n ) = O ( n log n ) T(n) = O(n \log n) T(n)=O(nlogn)
六、空间复杂度分析
空间复杂度:
O(n)
- 合并操作的空间
临时数组:归并操作需要额外的O(n)
空间存储合并结果。例如,合并两个子数组时,需创建一个大小为n
的临时数组temp
。 - 递归栈空间
递归调用栈:由于归并排序是递归实现的,递归栈的最大深度为O(log n)
。每一层递归的空间复杂度为O(1)
,因此递归栈总空间复杂度为O(log n)
。 - 总空间复杂度
整体空间复杂度:归并排序的空间复杂度为O(n)
,由合并操作的临时数组主导。递归栈空间O(log n)
相对较小,通常忽略不计。
七、稳定性分析
稳定性:
稳定排序
-
分治过程中的稳定性
在归并排序的分治过程中,数组被递归地划分为更小的子数组,直到每个子数组仅包含一个元素。由于单个元素天然有序且无需进一步操作,因此这个阶段不会影响元素的相对顺序。 -
合并过程中的稳定性
归并排序的关键在于合并两个已排序的子数组时如何处理相同元素。在合并操作中,当遇到左右两个子数组中的元素相同时,如果总是优先选择左子数组中的元素,则可以确保这些相同元素在排序前后的相对顺序不变。
八、适用场景
- 大规模数据排序
- 链表排序
- 稳定性要求高的场景
九、总结
特性 | 描述 |
---|---|
时间复杂度 | 最坏/平均/最好:O(n log n) |
空间复杂度 | O(n)(需要额外存储空间) |
稳定性 | 稳定 |
适用场景 | 大规模数据排序、链表排序 、 稳定性要求高的场景 |
优点 | 稳定、高效、适用于多种数据结构、无最坏输入影响 |
缺点 | 需要额外空间、实现略复杂、对于小数组效率不如插入排序等简单排序 |