Python函数式编程入门:闭包与装饰器详解

函数式编程是现代编程范式中的重要组成部分,Python虽然不是纯粹的函数式语言,但提供了强大的函数式编程特性。本文将重点介绍Python中两个核心的函数式编程概念:闭包和装饰器,帮助初学者掌握这些强大工具。

一、函数式编程基础

什么是函数式编程?

函数式编程(Functional Programming)是一种编程范式,它将计算视为数学函数的求值,避免改变状态和使用可变数据。主要特点包括:

  • 函数是一等公民

  • 避免副作用

  • 强调不可变性

  • 使用高阶函数

在编程语言设计中,"一等公民"(First-class Citizen)是指某种语言元素享有与其他元素同等的权利和灵活性。当说"函数是一等公民"时,意味着函数在语言中拥有与其他基本数据类型(如整数、字符串)相同的地位和操作权限。这是函数式编程范式的核心特征之一,也是Python强大灵活性的重要体现。 

Python中的函数式特性

# 函数作为一等公民
def greet(name):
    return f"Hello, {name}!"

# 将函数赋值给变量
say_hello = greet
print(say_hello("Alice"))  # 输出: Hello, Alice!

# 函数作为参数
def apply(func, x):
    return func(x)

print(apply(greet, "Bob"))  # 输出: Hello, Bob!

二、闭包(Closure)

闭包的概念

闭包是指一个函数"记住"并"访问"其词法作用域中的变量,即使该函数在其词法作用域之外执行。

 

闭包必须满足以下三个条件:

  • 必须有一个内嵌函数

  • 内嵌函数必须引用外部函数中变量

  • 外部函数返回值必须是内嵌函数

闭包示例

def outer_func(x):
    def inner_func(y):
        return x + y
    return inner_func

closure = outer_func(10)
print(closure(5))  # 输出: 15

闭包的工作原理

  1. outer_func被调用,创建局部变量x

  2. inner_func被定义并返回,它"记住"了x

  3. 即使outer_func执行完毕,inner_func仍能访问x

闭包的实用场景

# 计数器工厂
def counter():
    count = 0
    def increment():
        nonlocal count
        count += 1
        return count
    return increment

c = counter()
print(c())  # 1
print(c())  # 2
print(c())  # 3

闭包优点

  1. 逻辑连续,当闭包作为另一个函数调用参数时,避免脱离当前逻辑而单独编写额外逻辑。

  2. 方便调用上下文的局部变量。

  3. 加强封装性,是第2点的延伸,可以达到对变量的保护作用。

闭包缺点

引用在,空间不灭:闭包使得函数中的变量保存在内存中,内存消耗很大

 

三、装饰器(Decorator)

装饰器基础

Python装饰器是一种特殊的高阶函数,它允许在不修改原函数代码的情况下动态增强函数的功能。装饰器本质上是一个接收函数作为参数的可调用对象(通常是一个函数),它返回一个新的函数来"包装"原始函数,通过在函数执行前后添加额外逻辑(如日志记录、性能统计、权限校验等)来实现功能的扩展。使用`@decorator`语法糖可以简洁地将装饰器应用到目标函数上,使得代码更加模块化和可复用,是Python中实现AOP(面向切面编程)的核心技术。

简单装饰器示例

def my_decorator(func):
    def wrapper():
        print("函数执行前")
        func()
        print("函数执行后")
    return wrapper

@my_decorator
def say_hello():
    print("Hello!")

say_hello()
"""
输出:
函数执行前
Hello!
函数执行后
"""

 执行过程:

  1. 定义阶段

    • 当解释器遇到@my_decorator时,会立即执行my_decorator(say_hello)

    • 将原始say_hello函数作为参数传递给my_decorator

  2. 装饰过程

    def my_decorator(func):  # func = 原始say_hello
        def wrapper():      # 定义包装函数
            print("函数执行前")  # 新增前置逻辑
            func()          # 调用原始函数
            print("函数执行后")  # 新增后置逻辑
        return wrapper     # 返回包装后的函数
    • 原始say_hello被替换为wrapper函数

    • 现在say_hello变量指向的是wrapper而非原始函数

  3. 调用阶段

    say_hello()  # 实际调用的是wrapper()

    执行流程:

    • 打印"函数执行前"

    • 调用func()即原始say_hello(),打印"Hello!"

    • 打印"函数执行后"

  4. 内存变化示意图

    装饰前: say_hello -> 原始函数对象
    装饰后: say_hello -> wrapper函数对象
            wrapper.func -> 原始函数对象(闭包保持引用)

关键点说明:

  • 装饰器在模块导入时就会执行(函数定义时)

  • 实际调用的是被装饰后的新函数

  • 原始函数通过闭包被保留在wrapper的作用域中

  • 这种模式实现了"横切关注点"与核心逻辑的分离

装饰器的工作原理

  1. @my_decorator语法糖等价于:say_hello = my_decorator(say_hello)

  2. 调用say_hello()实际上是调用wrapper()

  3. wrapper函数可以访问原始函数func并在其前后添加操作

带参数的装饰器

def repeat(num):
    def decorator(func):
        def wrapper(*args, **kwargs):
            for _ in range(num):
                result = func(*args, **kwargs)
            return result
        return wrapper
    return decorator

@repeat(3)
def greet(name):
    print(f"Hello, {name}!")

greet("Alice")
"""
输出:
Hello, Alice!
Hello, Alice!
Hello, Alice!
"""

四、装饰器的实际应用

1. 计时装饰器

import time

def timer(func):  # 接收被装饰的函数
    def wrapper(*args, **kwargs):  # 定义包装函数
        start = time.time()       # 记录开始时间
        result = func(*args, **kwargs)  # 调用原始函数
        end = time.time()         # 记录结束时间
        print(f"{func.__name__}执行时间: {end-start:.4f}秒")  # 打印耗时
        return result             # 返回原始函数的结果
    return wrapper               # 返回包装后的函数

@timer
def long_running_func():
    time.sleep(2)  # 人为制造一个2秒的"耗时任务" 休眠2s

long_running_func()  # 输出: long_running_func执行时间: 2.0002秒

 2. 缓存装饰器

from functools import lru_cache

@lru_cache(maxsize=None)
def fibonacci(n):
    if n < 2:
        return n
    return fibonacci(n-1) + fibonacci(n-2)

print(fibonacci(30))  # 快速计算结果

 3. 权限验证装饰器

def login_required(func):
    def wrapper(user, *args, **kwargs):
        if not user.is_authenticated:
            raise PermissionError("需要登录")
        return func(user, *args, **kwargs)
    return wrapper

@login_required
def view_profile(user):
    print(f"查看{user.username}的个人资料")

五、类装饰器

Python还支持使用 类 实现装饰器:

class CountCalls:
    def __init__(self, func):
        self.func = func
        self.calls = 0

    def __call__(self, *args, **kwargs):
        self.calls += 1
        print(f"调用次数: {self.calls}")
        return self.func(*args, **kwargs)

@CountCalls
def say_hello():
    print("Hello!")

say_hello()  # 输出: 调用次数: 1 \n Hello!
say_hello()  # 输出: 调用次数: 2 \n Hello!

六、保留函数元信息

使用装饰器时,原始函数的__name____doc__等元信息会被覆盖,可以使用functools.wraps来保留:

from functools import wraps

def my_decorator(func):
    @wraps(func)
    def wrapper(*args, **kwargs):
        """包装函数文档"""
        print("装饰器操作")
        return func(*args, **kwargs)
    return wrapper

@my_decorator
def example():
    """示例函数文档"""
    pass

print(example.__name__)  # 输出: example
print(example.__doc__)   # 输出: 示例函数文档

七、总结与最佳实践

闭包要点

  1. 内部函数可以访问外部函数的变量

  2. 外部函数执行完毕后,内部函数仍能记住这些变量

  3. 使用nonlocal关键字可以修改外部变量

装饰器要点

  1. 装饰器本质上是高阶函数

  2. 可以接受函数作为参数并返回函数

  3. 使用@语法糖使代码更简洁

  4. 多层装饰器从下往上执行

最佳实践

  1. 保持装饰器简单专注

  2. 使用functools.wraps保留元信息

  3. 为装饰器编写清晰的文档

  4. 避免过度使用装饰器导致代码难以理解

函数式编程的这些特性可以让你的Python代码更加简洁、模块化和可维护。掌握闭包和装饰器是成为Python高级程序员的重要一步!

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值