文章目录
概述
根据前一篇文章算计算出来的股票对数收益率,我们在这一篇文章在前文的基础上,分别用朴素法(平均法),简单移动平均法,5日简单移动平均法,10日移动平均法,15日移动平均法来,一次指数平滑法,二次指数平滑法,三次指数平滑法来预测。并且用RMSE,ADF检验对数据进行平稳性检验。
一、数据整理
1.时间格式转换
先对数据进行整体的概览:
用python中的pandas库的to_datetime()来对时间进行一个格式的转换。
#format = '%Y/%m/%d'
df.index = df.Timestamp
df_ts = df.resample('D').sum()
df_ts
on
2.训练集和测试集
#2007 年 1 月- 2007 年 12 月用作训练数据,2007 年 9 月 – 2007 年 12 月用作测试数据。
train = df_ts['2007/1/4':'2007/12/28']
test = df_ts['2007/10/1':'2007/12/28']
all = df['Count']
date = df['Datetime']
train.tail()
#print(train)
注:由于在划分的时候,数据包含了一年中每一天,而实际的股票开盘日并非每一天都有,所以存在在部分空缺值,故在后面利用dropna()来进行删除空缺行,以便后文分析。
train2 = train[train.loc[:]!= 0].dropna()
3.原始股票对数收益率数据展示
train.Count.plot(figsize=(15,8), title= 'Logarithmic yield', fontsize=14)
test.Count.plot(figsize=(15,8), title=