主观卡顿的定义与改善方案

卡顿与其影响:

视频直播最大痛点莫过于卡顿,做为视音频质量的核心指标,行业标准算法为:累计卡顿/在线时长≥5%即为卡顿人头,卡顿率=卡顿用户数/总用会数(各家对于该指标的采样颗粒度一般在200ms-1000ms)。该指标是一种技术指标,不是主观感受,尽管我们可以通过该指标观测到一些问题,但有卡顿用户的感受程度如何?会不会影响完播、交易、复购、差评?卡顿的根因到底是什么?是低端设备、网络还是其他原因?这些对我们来说始终都是黑盒子。

从数据分析中,我们可以看到,卡顿与完播率成正相关关系,卡顿与差评成正相关关系,当卡顿率≥4%时完播率直线下降,而完播与复购又是正相关,因此卡顿会直接影响我们的转化率和复购率。

指标验证:

采用电话的方式,对于100个上述指标的卡顿用户做了回访(取样颗粒度为200ms),其中30%用户表示并没有卡顿,40%用户表示确实卡顿且无法忍受,30%用户表示存在卡顿但不影响体验。造成上述差异的核心是卡顿事件的连续性,即:卡顿帧越集中,卡顿感越强烈,反之亦然。因此,我们可以说,目前业内使用的这种卡顿指标,可以做为优化技术手段的依据,但是用于衡量用户体感,颗粒度还是太粗。

通过数据观测我们发现,多数卡顿用户存在退出行为,将用户的退出与卡顿累计时长数据统计如下:

如图,不同的卡顿率会驱动用户退出房间,卡顿率越高用户退出越多,当单位时间累计卡顿达到xx时出现奇点,低于该值体验并不明显,达到该值退出用户急剧增多,因此,我们可以认为该指标可以说明,当累计卡顿达到xxms时,其播放体验足以驱动用户完成退教室动作。我们把xxms内累计卡顿达到xxms这一事件称之为卡顿事件,用于定义用户瞬时感受。当一场直播中出现多次卡顿事件时我们认为这场直播的体验是糟糕的。

衍生方案:

现在我们定义了瞬时卡顿,客户端出现卡顿时,可以上传设备的网络与性能状态(整体cpu占用、内存占用),网络表达方法可以采用ping其他网站的方式,cpu可以采用sdk调度延时或解码延时(直接抓cpu容易抓不准)

通过上述方法,我们可以抓到每个卡顿事件与卡顿的根因。当用户发生卡顿时,我们可以弹出文案提醒用户更换设备或网络,也可以生成看板,让客服更主动的提醒用户,还可以驱动技术更好的完善产品,从根本解决问题,也可以和业务统一口径,避免信息不对称造成的恐慌。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值