专升本-人工智能(AI)

本文概述了人工智能的基本概念,包括其起源、发展阶段(如弱人工智能与强人工智能),以及关键技术和应用领域,如机器学习、神经网络、自然语言处理和智能家具。文章还提及了人工智能的重要里程碑,如图灵测试和AlphaGo战胜李世石,展示了人工智能在物联网、金融、医疗等领域的应用实例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

人工智能(AI):

  1. 什么是人工智能:(总结:感知,获取,得出(结论,执行))

运用数理逻辑和计算机成果,提供关于形式化计算和处理的理论,模拟人类某些智能行为的基本方法和技术

使一部机器的反应就像是一个人在行动时所依据的智能--------麦卡锡  --提议用人工智能作为学科名

人工智能是关于知识的学科,即怎样表示知识,获取知识和使用知识的学科-----尼尔森

人工智能就是研究如何使计算机区做过去只有人才能做的富有智能工作------温斯顿

让机器做本需要人的智能才能做到的事情的一门科学-------明斯基(人工智能之父---图灵,明斯基)

  1. 第一次出现的时间:1956年达特茅斯学会,最先提出概念的是图灵(1950)
  2. 弱人工智能和强人工智能:

弱人工智能:擅长某一领域的人工智能,只能实现部分人类智能

强人工智能:在各方面都能和人类比肩的人工智能

  1. 人工智能发展的历程:时间

  萌芽期(1956年以前):1950年阿兰图灵提出图灵测试;1951年明斯基创建世界第一台神经网络计算机SNARC

  黄金期(1956-1974年):1956年达特茅斯会议,计算机解决代数应用,几何证明,学习和使用英语,1966年发布第一台聊天机器人ELIZA

瓶颈期(1974-1980年):由于计算机有限的内存和处理速度,视觉的可变性与自然语言的模糊性

繁荣期(1980-1987年):1980年XCON专家系统(具有完整专业知识和经验的智能系统:)。。。。

崛起期(1993年至今):高等代数,概率统计与优化理论。统计学理论,支持向量机,概率图模型的加入

  1. 人工智能应用领域:

物联网,云服务,大数据,医疗,安防,制造业,金融,零售...

  1. 人机对话:蚂蚁金服,苹果SiRi.....   --人工客服

         语音助手(苹果SiRi)---聊天机器人(微软小冰)---面向场景的任务执行(智能语音电视:语音调频道)

机器学习:    --人工智能的核心

是什么:模拟人类学习活动,自动获取知识和技能

学习的概念:就是在系统的不断重复工作中改进其性能的过程,使得下一次执行同样的任务或类似任务时效率更高

本质:

 强大的计算能力,大批的训练数据,模仿人类学习行为,不断改进自身性能

发展历程:

萌芽期:1950-1960   发展历程和人工智能发展历程差不多一致

常见算法:(企业数据应用场景常用的是1,2)

  1. 监督式学习:输入的数据对应着一个明确的结果
  2. 无监督式学习:不知道输入数据对应的结果,只能读取数据并寻找数据的模型和规律
  3. 半监督式学习:输入数据只有一小部分数据有明确结果,大部分数据没有明确结果。相比监督学习成本较低,但是又达到较高的准确度,用于预测结果,图像识别
  4. 强化学习:输入数据反馈给模型,模型进行响应。主要用于机器人控制,自动驾驶.需要快速响应的

人工神经网络(ANN[Artificial Neural Networks])

是什么?

由大量处理单元(被称为人工神经元)经广泛互连而组成的人工网络,用来模拟人脑神经系统的结构和功能。是机器学习的一个庞大分支

 

主要特征:

能较好地模拟人的形象思维

具有大规模并行协同处理能力

具有较强的学习能力

具有较强的容错能力联想能力       是一个大规模自组织、自适应的非线性动态系统

应用:

模式识别,信号处理,自动控制,人工智能,辅助决策

自然语言处理(NLP):

包含机器翻译,文本摘抄,语音识别。   ----注意:图像识别不是自然语言处理

人工智能开发框架和平台:

框架:

   TensorFlow是人工智能领域最常用的框架,是一个使用数据流图进行数值计算的开源软件,该框架允许在任何CPU和GPU上进行,使用C++和Python语言

Caffe是一个深度学习的框架,Accord.NET是一个NET机器学习框架,CNTK,theano,keras,torch,spark(大数据,人工智能)

平台:

百度AI开放平台

什么是智能家具:    

基于物联网技术,由硬件,软件系统,云计算平台构成的家具生态圈,实现人员控制设备,各设备互联,设备自我学习,并通过收集数据,分析用户行为,为用户提供个性化生活服务

使用的技术:1.智能语音技术(开窗帘,灯光,电器,打扫卫生)

                      2.机器学习技术(节目推送)

                      3.声音图像识别(门开锁)

                      4.大数据技术(智能家电故障诊断,远程监控,诊断)

人工智能引入的案例:

人机大战:2016年3 月AlphaGo击败围棋九段李世石

扫盲:

  1. 最先提出概念的是图灵(1950),1956年最早出现人工智能一词,麦卡锡提议使用人工智能作为学科名
  2. 图灵测试想证明的是机器智能,并非人工智能。
  3. 专家系统以知识为基础,以推理为核心的系统
  4. 人工智能的运用领域:人机对话,智能金融,智能医疗,智能安防,自动驾驶,智能控制。
  5. 人工智能在生活中有哪些运用:图像处理领域,机器视觉,电影新闻推荐,人工客服,web搜索引擎,机器翻译,自动驾驶机器人
  6. 机器学习的应用:计算机视觉,图像分析,光文字识别,语音识别,手写识别,生物特征识别,搜索引擎,文件分类
<think>嗯,用户想知道大专生如何进入人工智能相关岗位。首先,我需要考虑人工智能领域对学历的要求,通常本科或更高,但大专生也有机会。可能需要通过哪些途径呢? 首先,用户可能需要提升技能。人工智能岗位通常需要编程、数学和算法基础。大专生可能需要自学或参加培训,比如学习Python、机器学习框架如TensorFlow或PyTorch。参考引用[1]提到AI技能型人才需求大,中职院校也在培养,说明技能很重要。 然后,项目经验很重要。没有实际项目的话,可能很难竞争。建议参与开源项目或自己做一些小项目,比如图像分类或数据分析,这样可以展示能力。比如Kaggle竞赛,或者GitHub上的项目。 学历提升可能也是一个途径。大专生可以通过专升本或在线课程提升学历,比如Coursera上的深度学习课程。引用[1]提到人才缺口,企业可能更看重实际能力,但学历仍是门槛之一,所以可能需要同时提升。 求职策略方面,可能需要瞄准初级岗位,如AI测试工程师、数据分析助理,或者非核心岗位如AI产品运营。引用[2]中的新媒体运营岗位虽然不同,但说明企业可能接受不同背景的人,特别是如果具备相关技能。 另外,考取认证证书可能有帮助,比如TensorFlow开发者认证或AWS机器学习认证。这些证书可以证明技能,弥补学历不足。 还要注意软技能,比如问题解决能力和沟通能力。人工智能项目通常需要团队合作,所以这些也很重要。 最后,持续学习是关键,因为AI技术发展快,需要跟进最新技术。可能建议关注行业动态,参加技术社区。 总结起来,路径可能包括技能学习、项目积累、学历提升、针对性求职和考取证书。需要结合实践和理论学习,同时利用现有资源如在线课程和开源项目。</think>### 大专生进入人工智能岗位的路径与要求 #### 一、核心技能补强 1. **编程能力** - 掌握Python(主语言)、Java或C++等编程语言 - 熟悉TensorFlow/PyTorch框架,例如: ```python # 简单的神经网络示例 import tensorflow as tf model = tf.keras.Sequential([ tf.keras.layers.Dense(128, activation='relu'), tf.keras.layers.Dense(10, activation='softmax') ]) ``` - 理解数据结构与算法,如动态规划、树结构等 2. **数学基础** - 重点掌握线性代数(矩阵运算)、概率统计(贝叶斯定理)、微积分(梯度计算) - 推荐学习路径:Coursera《机器学习数学基础》课程 3. **AI专项技能** - 计算机视觉:OpenCV图像处理、YOLO目标检测 - 自然语言处理:RNN/LSTM文本分类 - 机器学习:掌握经典算法如随机森林、SVM的实现原理 #### 二、实践能力证明 1. **项目开发** - 完成3-5个完整项目,例如: - 基于MNIST数据集的手写数字识别(准确率>98%) - 电影评论情感分析系统(使用BERT预训练模型) - 项目需包含:数据清洗(缺失值处理)、模型调优(超参数搜索)、结果可视化 2. **竞赛参与** - Kaggle竞赛(至少获得前30%排名) - 阿里天池/AI Studio赛事 - 例如:房价预测比赛中的特征工程优化方案 #### 三、学历提升策略 1. **继续教育** - 专升本选择计算机科学/应用数学专业 - 在线硕士项目(如佐治亚理工OMSCS) 2. **认证体系** - 行业认证:华为HCIA-AI、AWS机器学习专项认证 - 框架认证:TensorFlow Developer Certificate #### 四、岗位适配策略 | 岗位类型 | 技能要求 | 薪资范围(月) | |----------------|-----------------------------------|----------------| | AI实施工程师 | 模型部署、Docker/K8s、边缘计算 | 6-10K | | 数据标注主管 | 标注体系设计、质量管理 | 5-8K | | AI产品助理 | PRD文档撰写、竞品分析 | 6-9K | | 智能客服开发 | Dialogflow/Rasa框架应用 | 7-12K | #### 五、求职渠道优化 1. **企业筛选** - 优先选择AI落地应用企业(如智能安防、工业质检领域) - 关注中小型科技公司的实施类岗位需求 2. **简历包装** - 突出项目中的技术指标(如模型准确率提升15%) - 量化工作成果(如优化数据预处理使效率提升40%) 3. **面试准备** - 重点准备:逻辑回归推导、CNN反向传播手推 - 场景题:设计校园人脸识别考勤系统架构 #### 六、职业发展路径 $$职业轨迹 = 实施工程师 \rightarrow 算法优化工程师 \rightarrow 领域专家$$ 建议前2年聚焦技术深度,3-5年发展领域专精(如医疗影像分析、工业缺陷检测)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值