二叉树的后序遍历

目录

一、前言

二、后序遍历

三、递归

四、迭代


一、前言

        本篇文章主要讲解二叉树的后序遍历,对前序遍历、中序遍历不熟悉的同学可以观看本专栏。

二、后序遍历

        简单来说,前序遍历的遍历思想就是: 左子树 ---> 右子树--->根结点

图一 后序遍历

如何在不编程的情况下快速计算二叉树的中序遍历呢?接下来我教给大家一个简单快捷的方法。

图二 小孔穿线法

        这种快速计算方法我给起名为小孔穿线法,后序遍历的小孔穿线法就是在该二叉树的每个节点的右侧画一个小孔,然后依次连接起来,如图二所示,所以该二叉树的后序遍历结果为[4、5、2、6、7、3、1]。

        当然该方法是为了让大家不通过编程来进行快速计算的,接下来我将从递归和迭代两种编程方法为大家讲解。(Morris算法本篇文章暂且先不讲,请关注后续)

三、递归

        二叉树遍历,递归思想其实是最简单的方法。后序遍历我们递归的思想就是左子树 ---> 右子树--->根结点。我直接给伪代码了,不懂的同学可以私信或评论区问我。

struct TreeNode 
{
     int val;
     struct TreeNode *left;
     struct TreeNode *right;
};

void postorder(struct TreeNode* root, int* res, int* resSize)
{
    if( !root )
    {
        return ;
    }
    postorder(root->left, res, resSize);
    postorder(root->right, res, resSize);
    res[(*resSize)++] = root->val;
}

int* postorderTraversal(struct TreeNode* root, int* returnSize)
{
    int*    res = malloc(sizeof(int)*100);
    *returnSize = 0;

    postorder(root, res, returnSize);
    return res;
}

        时间复杂度:o(n)

        空间复杂度:o(1) 

四、迭代

        递归的时候隐式地维护了一个栈,而我们在迭代的时候需要显式地将这个栈模拟出来,其余的实现与细节都相同,具体可以参考下面的代码。

struct TreeNode 
{
     int val;
     struct TreeNode *left;
     struct TreeNode *right;
};

int* postorderTraversal(struct TreeNode* root, int* returnSize)
{
   int*     res = malloc(sizeof(int)*100);
   *returnSize  = 0;
   struct TreeNode**    stack = malloc(sizeof(struct TreeNode*)*100);
   int top = 0;
   struct TreeNode*     prev = NULL;

   while( root != NULL || top > 0 )
   {
        while( root != NULL )
        {
            stack[top++] = root;
            root = root->left;
        }
        root = stack[--top];
        if(root->right == NULL || root->right == prev )
        {
            res[(*returnSize)++] = root->val;
            prev = root;
            root = NULL;
        }
        else
        {
            stack[top++] = root;
            root = root->right;
        }
   }
   return res;
}

        时间复杂度:o(n)

        空间复杂度:o(1) 

  • 6
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
### 回答1: 后序遍历二叉树算法代码如下:def postOrder(root): if root: postOrder(root.left) postOrder(root.right) print(root.data) ### 回答2: 二叉树后序遍历是指先访问左子树,再访问右子树,最后访问根节点的遍历方式。接下来给出二叉树后序遍历算法代码的实现。 在二叉树后序遍历算法代码实现中,我们可以使用递归或栈来辅助完成。这里给出使用递归的实现方式。 首先定义二叉树的节点数据结构: ``` class TreeNode: def __init__(self, val=0, left=None, right=None): self.val = val self.left = left self.right = right ``` 然后实现后序遍历的函数: ``` def postorderTraversal(root): if root is None: return [] result = [] result += postorderTraversal(root.left) # 访问左子树 result += postorderTraversal(root.right) # 访问右子树 result.append(root.val) # 访问根节点 return result ``` 代码中使用递归的方式来实现后序遍历。首先判断根节点是否为空,若为空,则返回空列表。然后递归地访问左子树,再递归地访问右子树。最后将根节点的值添加到结果列表中。 下面给出一个示例来展示如何使用该函数进行后序遍历: ``` # 创建一个二叉树 root = TreeNode(1) root.left = TreeNode(2) root.right = TreeNode(3) root.left.left = TreeNode(4) root.left.right = TreeNode(5) # 对二叉树进行后序遍历 result = postorderTraversal(root) # 输出遍历结果 print(result) # 输出 [4, 5, 2, 3, 1] ``` 以上就是二叉树后序遍历算法代码的实现。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

努力学代码的小信

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值