线性判别分析(LDA)

解决二分类问题,假设两个类各自都服从正态分布。思想为将样本投影到一条直线上,使得同类的样本点投影尽可能接近,异类的样本点投影尽可能远离(组内方差小组间方差大)。训练完成后,给定一个新的点,将其投影到同一直线上,根据在直线上的位置预测其分类。

二分类LDA

样本为

D=\{ (\vec{x}_1,y_1), (\vec{x}_2,y_2), ..., (\vec{x}_n,y_n) \},

因变量

y_i \in \{0,1\}.

\vec{w},\;\vec{X}_i,\;\vec{\mu}_i,\;\mathbf{\Sigma}_i

表示投影直线的方向向量和第i类样本的集合、均值向量、协方差矩阵。

两类样本的均值在直线上的投影为

\vec{w}^T\vec{\mu}_0,\;\vec{w}^T\vec{\mu}_1,

根据协方差矩阵的性质可知其投影点的方差为

\vec{w}^T\mathbf{\Sigma}_0\vec{w},\;\vec{w}^T\mathbf{\Sigma}_1\vec{w},

注意空间中的点投影到直线上都变成了一维的实数而非向量,表示投影到直线上之后到原点O的距离。

为实现开头所说的尽量靠近组间尽量远离,我们最大化如下函数

J=\frac{||\vec{w}^T\vec{\mu}_0-\vec{w}^T\vec{\mu}_1||^2_2}{\vec{w}^T\mathbf{\Sigma}_0\vec{w}+\vec{w}^T\mathbf{\Sigma}_1\vec{w}}=\frac{\vec{w}^T(\vec{\mu}_0-\vec{\mu}_1)(\vec{\mu}_0-\vec{\mu}_1)^T\vec{w}}{\vec{w}^T(\mathbf{\Sigma}_0+\mathbf{\Sigma}_1)\vec{w}},

定义两个取值已知的矩阵

\mathbf{\mathit{S}}_b=(\vec{\mu}_0-\vec{\mu}_1)(\vec{\mu}_0-\vec{\mu}_1)^T,\;\;\mathbf{\mathit{S}}_w=\mathbf{\Sigma}_0+\mathbf{\Sigma}_1,

J=\frac{\vec{w}^TS_b\vec{w}}{\vec{w}^TS_w\vec{w}},

注意上式分子分母展开后都是w的二次项,对w乘以一个非零系数上式取值不变,因此上式只与w的方向有关而与其长度无关,所以我们添加一个约束条件得到如下优化问题:

\begin{matrix} \mathop{\mathrm{min}} \limits_{\vec{w}} -\vec{w}^TS_b\vec{w}\\ s.t.\;\; \vec{w}^TS_w\vec{w}=1 \end{matrix}

通过拉格朗日乘子法可以得到

S_b\vec{w}=\lambda S_w\vec{w},

根据

S_b\vec{w}=(\vec{\mu}_0-\vec{\mu}_1)(\vec{\mu}_0-\vec{\mu}_1)^T\vec{w}=(\vec{\mu}_0-\vec{\mu}_1)[(\vec{\mu}_0-\vec{\mu}_1)^T\vec{w}]

可知左边的方向恒为

\vec{\mu}_0-\vec{\mu}_1,

因此不妨令

S_b\vec{w}=\lambda(\vec{\mu}_0-\vec{\mu}_1),

从而有

\vec{w}=S_w^{-1}(\vec{\mu}_0-\vec{\mu}_1).

多分类LDA

假设存在N个类,第i类的样本量为n_i,令

W,\;\vec{X}_i,\;\vec{\mu}_i,\;\mathbf{\Sigma}_i

表示投影矩阵和第i类样本的集合、均值向量、协方差矩阵。

定义全局散度矩阵为

S_t=\sum\limits_{i=1}^{n}(\vec{x}_i-\vec{\mu})(\vec{x}_i-\vec{\mu})^T

其中mu是整个样本的均值向量。定义类内散度矩阵为

S_w=\sum\limits_{i=1}^{N}S_{w_i},\;\;S_{w_i}=\sum\limits_{\vec{x} \in X_i}(\vec{x}_i-\vec{\mu}_i)(\vec{x}_i-\vec{\mu}_i)^T

定义类间散度矩阵为

S_b=S_t-S_w=\sum\limits_{i=1}^N m_i(\vec{\mu}_i-\vec{\mu})(\vec{\mu}_i-\vec{\mu})^T.

我们取优化目标为

\mathop{\mathrm{min}} \limits_{W} \frac{tr(W^TS_bW)}{tr(W^TS_wW)},

其中W是d×(N-1)维实数值矩阵。

  • 3
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值