最短路问题简单汇总

最短路

1.dijkstra算法

​ dijkstra算法是单源最短路,也就是说以某个点为起点,我们求解这个点到其他点的最短路。

​ dijkstra的核心思路如下(以下我们假设起点为1):

  • d i s t dist dist数组记录了从1点到其他点的最短距离 比如说 dist[j]代表从1点到j点的最短距离
  • 首先 我们先让dist初始化为正无穷 表示一开始 我们所有点都和1点无连接 只让dist[1]为0 因为自己跟自己的距离肯定是0
  • 之后 每次更新dist,首先,我们要找到dist当中的最小值(假如是dist[i]) ,这个最小值一定是最短路 ,我们就不用改变他了以后(这个具体为啥,是基于贪心的思想进行证明的)。然后 我们看看 从当前点(dist最小值的点)直接走到和他相连的点(比如dist[j])和之前已经更新过的dist[j]那个更小 取最小值 也就是以下公式 ,w表示 从i到j需要的权重

d i s t [ j ] = m i n ( d i s t [ j ] , d i s t [ i ] + w ) dist[j]=min(dist[j],dist[i]+w) dist[j]=min(dist[j],dist[i]+w)

​ 我们画个图可能更好理解 这个公式描绘的过程就是 如下图所示的过程 是走红色小还是走黄色小。

在这里插入图片描述

  • dijkstra可以处理自环和重边 对于自环我们有一个st数组记录是否进入被判定为最短路 对于重边 因为朴素的dijkstra是针对稠密图的,所以 用邻接矩阵存 ,直接取重边的最小值即可
  • 但是 dijkstra无法处理负权边和负环 因为 越走越小就出不来了

coding

#include<iostream>
#include<cstring>
using namespace std;
const int N=520;
int g[N][N];
int dist[N];
bool st[N];
int n,m;
int dijkstra(int x)
{
// 以x为起点求单源最短路
    memset(dist,0x3f,sizeof(dist));
    dist[1]=0;
    for(int i=1;i<=n;i++)
    {
        int k=-1;
        for(int j=1;j<=n;j++)
        {
            if(st[j]==0&&(k==-1||dist[j]<dist[k]))
            k=j;
        }
        // cout<<k<<endl;
        st[k]=1;
        for(int j=1;j<=n;j++){
            dist[j]=min(dist[j],dist[k]+g[k][j]);
        }

    }   
    // cout<<dist[3];
    if(dist[n]==0x3f3f3f3f)
    return -1;
    return dist[n];

}
int main()
{
  
    cin>>n>>m;
    memset(g,0x3f,sizeof(g));
    for(int i=1;i<=m;i++)
    {
        int x,y,z;
        cin>>x>>y>>z;
        g[x][y]=min(g[x][y],z);


    }
    // cout<<g[1][2]<<endl;
    cout<<dijkstra(1)<<endl;

    return 0;
}

  • 这段代码当中 需要注意的是 去除重边取最小 再有就是算法中第一层循环n次和n-1次都可以 因为每一次循环都是取出一个dist作为最小 做了n-1次之后剩下的哪一个dist肯定是最小的了(因为只有他一个了 )
  • 这个算法的时间复杂度是 O ( n 2 ) O(n^2) O(n2) 的 对于稠密图很好用

2.堆优化迪杰斯特拉

​ 对于稀疏图 也就是点很多,但是边很少的图 我们可以用堆优化的dijkstra

​ 也就是对于 每一次找最小dist的过程 我们借助于 优先队列这个数据结构 去找 而不是去遍历

​ coding

#include<iostream>
#include<queue>
#include<cstring>
using namespace std;
const int INF=0x3f3f3f3f;
int n,m;
const int N=1e6+100;
int dist[N];
bool st[N];
typedef pair<int,int> PII;
priority_queue<PII,vector<PII>,greater<PII>> heap;
// 优先队列默认为小根堆 
int h[N],e[N],ne[N],w[N];
int idx;
int dijkstra(int x)
{
    memset(dist,0x3f,sizeof(dist));
    dist[x]=0;
    heap.push({0,x});
    while(heap.size())
    {
        auto temp=heap.top();
        heap.pop();
        int distance=temp.first;
        int k=temp.second;
        // cout<<k<<" "<<distance<<endl;
        if(st[k]==1) continue;
        st[k]=1;
        for(int i=h[k];i!=-1;i=ne[i])
        {
             int temp_1=e[i];
            if(st[temp_1]==0)
            {
                if(dist[temp_1]>dist[k]+w[i])
                {
                    dist[temp_1]=dist[k]+w[i];
                    heap.push({dist[temp_1],temp_1});

            }


        }





    }

}
    if(dist[n]==0x3f3f3f3f)
    return -1;
    return dist[n];

}
void add(int a,int b,int c)
{
    e[idx]=b;
    ne[idx]=h[a];
    w[idx]=c;
    h[a]=idx++;
   
}
int main()
{

    cin>>n>>m;
    memset(h,-1,sizeof(h));3.
    for(int i=1;i<=m;i++)
    {
        int x,y,z;
        cin>>x>>y>>z;
        add(x,y,z);
    }
    cout<<dijkstra(1)<<endl;
    return 0;
}
  • 注意 这个算法的时间复杂度是 n l o g m nlog_m nlogm的 也就是针对稀疏图非常的有效
  • if(st[k]==1) continue; 不加这个语句 这个代码可能会退化 成 O ( n 2 ) O(n^2) O(n2) 的朴素迪杰斯特拉
  • 注意 迪杰斯特拉算法无法解决负权边 如下图 就得不到答案
    在这里插入图片描述

3.bellman_ford

​ bellman_ford算法的思路非常简单 进行n次循环 每次循环内部 对我们的dist数组做一下松弛操作

  • dist[a]+w)那么什么是松弛操作? 松弛操作 就是 假如图当中有一条边 (a,b,w) 表示a指向b 距离为w,那么松弛操作就是 注意这里的dist[a]+w是上一次迭代当中的dist 至于为什么要这么做 看下面那个问题

d i s t [ b ] = m i n ( d i s t [ b ] , d i s t [ a ] + w ) dist[b]=min(dist[b],dist[a]+w) dist[b]=min(dist[b],dist[a]+w)

  • 为什么要这样做那

    我们首先要明确每迭代一次代表什么,我们先看下面这张图,经过我们第一次更新 结果应该是 :

    dist[2]=1,dist[3]=2,dist[4]=INF INF表示无穷

    经过第二次更新

    dist[2]=1,dist[3]=2,dist[4]=5

    ​ 我们可以管中窥豹的看出一些问题 ,首先,为什么要是以前的状态 因为我们的贝尔曼–福德算法相当于是每一次迭代,如果有更新的话 假设现在是第k次迭代 那么就表示 我们的最短路 从1走到现在这个点需要迭代的点需要k步,如果是现在的状态的话,那么就有可能出现串联现象 也就是说 会在第一次 就让我们的dist[4]等于5 这看起来是正确的 但是是不符合 贝尔曼–福德算法的 设计思想的 这样就无法保证 是第2步 走到我们的4的了 也就是说 如果从1-4有两条边的话 我们要保证在遍历第二次之前 1和4依旧是不连通的

    ​ 再有 就是 为什么循环n次一定能获得答案(如果有的话),因为如果第n次还有更新的话(一般不会更新) 那么就代表 1-n之间有n条边,这不可能,所以说 如果n次都找不到答案 ,那么就代表了 从1-n有负环 存在 有的环路越走越小了,不断的在被更新。

在这里插入图片描述

  • 什么情况没有最短路

​ 和迪杰斯特拉不一样 bellman_ford算法允许有负权边 但是不允许有负环,因为负环可能存在没有最短路的情况 但是可能有 因为负环可能每在1-n要走的路上 。所以 在所经过的路上有负环的最短路是无法求解的 因为负环的话一定是越走越小的 只要一直在负环里面转圈。

所以说 bellman_ford算法的应用就只有 最多走k步得到最短路 这一种情况 因为他的时间复杂度是 O ( n ∗ m ) O(n*m) O(nm) 处理不带负权边的情况不如堆优化的迪杰斯特拉 处理带负权变的情况 不如SPFA 所以就比较局限

accoding

#include<iostream>
#include<cstring>
#include<algorithm>
using namespace std;
int n,m,k;
const int N=520;
const int M=1e4+100;
typedef struct
{
int a;
int b;
int w;

}edge;
edge g[M];
int dist[N],backup[N];
int bellman_ford()
{
    memset(dist,0x3f,sizeof(dist ));
    dist[1]=0;
    for(int _=1;_<=k;_++)
    {
        memcpy(backup,dist,sizeof(dist));
        for(int i=1;i<=m;i++)
        {
            int a=g[i].a,b=g[i].b,c=g[i].w;
            dist[b]=min(dist[b],backup[a]+c);


        }



    }
    
    if(dist[n]>0x3f3f3f3f/2)
    return -1e9;
    return dist[n];


}
int main()
{
    cin>>n>>m>>k;
    for(int i=1;i<=m;i++){
        int a,b,w;
        cin>>a>>b>>w;
        g[i]={a,b,w};

    }
    int t=bellman_ford();
        if(t==-1e9)
            cout<<"impossible";
        else 
        cout<<t<<endl;

    return 0;
}

4.SPFA

​ 我们可以看到贝尔曼福德算法 有一个问题 就是他很笨 我们更新了很多不需要更新的点

我们可以观察到 dist[b]=min(dist[b],dist[a]+w)这样的松弛操作 只有在dist[a]改变的时候 其他才会变换 于是SPFA的思想就是 每次只更新dist 变换之后的变 因为 这个带有拓补排序的特征 所以如果1-n之间没有边的话 是不会更新到n的 。

​ SPFA算法的时间复杂度一般是 O ( m ) O(m) O(m) 但是遇到菊花图会 退化 退化成贝尔曼福德算法 所以 如果是正权图的话 我们也可以用,只要出题人不卡 就可以了 。 但是 spfa依然不能处理负环问题

​ accoding:

#include<iostream>
#include<queue>
#include<cstring>
using namespace std;
const int INF=0x3f3f3f3f;
int n,m;
const int N=1e6+100;
int dist[N];
bool st[N];
// 优先队列默认为小根堆 
int h[N],e[N],ne[N],w[N];
int idx;
int spfa(int x)
{
    queue<int > q;
    memset(dist,0x3f,sizeof(dist));
    dist[1]=0;
    q.push(1);
    st[1]=true;
    while(q.size())
    {
        auto temp=q.front();
        q.pop();
        st[temp]=false;
        for(int i=h[temp];i!=-1;i=ne[i]){
            int g=e[i];
            if(dist[g]>dist[temp]+w[i])
            {
                dist[g]=dist[temp]+w[i];
                if(st[g]==false)
                {   
                    st[g]=true;
                    q.push(g);
                }


            }


        }



    }


    if(dist[n]==0x3f3f3f3f)
    cout<<"impossible"<<endl;
    else 
    cout<<dist[n]<<endl;
    return dist[n];
}
void add(int a,int b,int c)
{
    e[idx]=b;
    ne[idx]=h[a];
     w[idx]=c;
    h[a]=idx++;
   
}
int main()
{

    cin>>n>>m;
    memset(h,-1,sizeof(h));
    for(int i=1;i<=m;i++)
    {
        int x,y,z;
        cin>>x>>y>>z;
        add(x,y,z);
    }
   int t=spfa(1);
    return 0;
}

5floyd

​ 直接背板子 动态规划模板 注意i,k,j的遍历顺序即可 而且是多元最短路 比较easy

#include<iostream>
#include<string.h>
#include<algorithm>
using namespace std;
const int N=200+10; 
const int INF=1e9;
int d[N][N];
int n,m,k;
void flod()
{
    for(int k=1;k<=n;k++)
    for(int i=1;i<=n;i++)
    for(int j=1;j<=n;j++)
    d[i][j]=min(d[i][j],d[i][k]+d[k][j]);
}
int main()
{
    cin>>n>>m>>k;
    for(int i=1;i<=n;i++)
    for(int j=1;j<=n;j++)//初始化数组 
    {
        if(i==j)
        d[i][j]=0;
        else 
        {
            d[i][j]=INF;
        }

    }
    while(m--)
    {
        int x,y,right;
        cin>>x>>y>>right;
        d[x][y]=min(d[x][y],right);//防止重边 
    }
    flod();
    while(k--)
    {
        int x,y;
        cin>>x>>y;
        if(d[x][y]>=INF/2)//存在负权边 
        {
            cout<<"impossible"<<endl;

        }
        else 
        {
            cout<<d[x][y]<<endl;
        }

    }
    return 0;   
 } 


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值