Facebook的paper(How to late fusion?),和上个paper的目的一致,怎么样进行late fusion,提高检索的效率,提高召回率。
PS:文中的截图均来自于上面三篇paper。。。
零、相关性之DSSM回顾
============
1)双塔DSSM模型
==========
双塔DSSM模型
query(context)和doc(candidate)独立进行建模,各自得到embedding,最后进行相似度度量(L2/cosine等)。在搜索/推荐或者其他相似性检索领域,召回侧可以使用faiss(乘积量化)或者nsg(基于图检索)等方式,对超大规模的doc embedding进行索引。具体使用的时候,由query embedding来召回topk的结果用于后续的排序侧。此外,在粗排的过程中,也可以基于这种方式快速计算相似度,作为特征之一。
2)交互DSSM模型
==========