在Navicat中通过Excel表的方式向数据库表中批量导入数据

在导入的数据量比较大的时候,我们可以通过Excel表的方式向数据库表中批量导入。

下面将从新建数据库表开始,通过对操作步骤进行演示说明:

1、新建数据库表

下面是新建的一个数据库表,主键递增

2、根据数据库的表结构导出Excel表

选中导出格式为Excel格式,下一步

选择导出的数据库表和导出的位置,下一步

选择导出表的字段,下一步

一直下一步一直到最后,点击开始进行导出

3、我们从导出的位置可以找到导出的Excel文件,打开

在这个Excel表格中根据字段信息录入我们要导入的数据,其中注意id是自增逐渐,这里id要不同

4、在Navicat中向数据库表中导入这个Excel表的数据

选择导入格式为Excel格式,下一步

添加文件,选择我们要导入的Excel文件

这里要勾选你要导入进的数据库表

然后一直下一步直到最后,点击开始即可将Excel表中的数据导入进数据库表中

5、最终结果

### 如何通过Navicat以文件导入方式创建数据库 #### 准备工作 在使用 Navicat 导入 SQL 文件前,需要确保已经完成以下准备工作: - 安装并启动 Navicat 数据库管理工具。 - 成功连接到目标数据库服务器(如 MySQL、PostgreSQL 等)。 #### 创建数据库 1. 打开 Navicat 并连接至目标数据库服务器。通常可以通过右键点击 `localhost` 或其他已配置的连接节点来执行操作[^3]。 2. 新建一个数据库: - 右键点击左侧导航栏中的 `localhost` 节点,选择“新建数据库”选项。 - 设置数据库名称、字符集(推荐使用 `utf8`)、排序规则(建议设置为 `utf8_general_ci`),最后点击“确定”按钮完成创建[^1]。 #### 导入 SQL 文件 1. **定位数据库**:双击刚刚创建的新数据库,进入其内部结构视图。 2. **运行 SQL 文件**: - 在右侧窗口中找到该数据库对应的空白区域,右键点击后选择“运行 SQL 文件”命令。 - 浏览本地磁盘上的 `.sql` 文件路径,并选中待导入的目标文件。 3. **开始导入过程**:确认无误后,点击对话框内的“开始”按钮发起数据加载流程。等待进度条完成后会提示成功消息。 4. **验证结果**:返回到主界面,右键刷新当前数据库下的格列项,应该能够看到由 SQL 脚本生成的一系列新及其内容。 #### 处理 Excel/CSV 类型的数据源 对于非标准 SQL 格式的外部数据资源(比如 Microsoft Excel 格或逗号分隔值 CSV 文档),也可以借助 Navicat 实现高效迁移: - 首先调整好原始电子格里的字段标题行使其匹配目的端关系型模式定义; - 接着按照前述方法建立关联通道之后,在实际传输阶段允许指定映射关系从而顺利完成整个作业[^2]。 ```python # 示例 Python 代码片段展示如何读取 CSV 文件并通过 Pandas 库处理成适合批量写入库的形式 import pandas as pd df = pd.read_csv('example.csv') # 加载 csv 文件为 DataFrame 对象 print(df.head()) # 查看前几行记录概览 ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值