Prompt工程的本质是将人类非线性思维转化为机器可理解的线性逻辑。
这是一种从复杂到简单、从发散到收敛的思维重构过程。
我们是需要将我们熟知的思维模式,翻译成机器能够“稳定”识别的模式。
与人之间沟通不同,llm 对于上下顺序要求特别高。
从"思考"的角度来看:
人脑 = 并联电路(非线性)
特性:
-
多通道并行传输
-
高容错性但不稳定
-
需要"降压器"(工具)稳定输出,例如书写、流程图、思维导图类工具,让我们能够梳理清晰想法
AI = 串联电路(线性)
特性:
-
单通道顺序传输
-
低容错性但稳定
-
内置"稳压器"(函数)
人脑:
[思维A]──┬──[思维B]──┬──[思维C] // 并联
└──[思维D]──┘
AI:
[步骤1]──→[步骤2]──→[步骤3] // 串联
人脑思维转换为AI思维时,就像把“需求转化为程序语言”
并联(非线性) → 串联(线性)
跳跃 → 线性
发散 → 收敛
prompt的研究,跟产品设计的流程类似,还是在 产品+开发 的过程
但是让文本+图片类产品的开发成本降到足够低,扩大了“独立开发者”的范围
怎么样写 prompt?
写好 prompt = 流程化+用词具体+用词精准
1.流程化
流程化=拆分目标+细化步骤+简化冗余
把思考的段落,变成一条条线。
①首先来说,拆分目标
拆分目标就是把需求,拆解成一个个细小模块。
类似搭建积木的过程,积木会有不同的模块,然后组装成一个完整的积木。
一个积木的结构
├── 模块A(小袋1)
├── 模块B(小袋2)
└── 模块C(小袋3)
这是写的一个“心理分析 prompt” 呈现的结果
诉求分析: 核心诉求是寻求理解和支持,希望改善与母亲的关系 女儿正在经历自我价值感的危机 阻力分析: 母亲的否定性评价对女儿的自我认知造成严重打击 亲子关系中缺乏有效沟通和情感连接 女儿可能已形成消极的自我认知模式 推力分析: 寻求帮助的意愿表明有改变的动力 意识到这种关系模式的不健康 渴望获得认可和理解
把分析心理情况,拆成三个小目标:诉求分析+阻力分析+推力分析
心理分析
├── 诉求分析
├── 阻力分析
└── 推力分析
流程化思维有什么优势?
避免逻辑交叉
举个逻辑链交叉的例子
正面论述 ----╮ ╭---- 结论A ╳ 反面论述 ----╯ ╰---- 结论B
这里的逻辑链交叉就是,一条逻辑线里同时写出了正反观点,而且要求不一致,这会增加 llm 的理解难度。
-
编写:结构清晰,降低复杂性,便于执行,减少不同流程间互相影响。流程图、思维导图可以协助梳理结构。
-
产出:稳定,可以定义顺序,结构。
②然后是,细化步骤+最小可执行模块
什么是细化步骤?
再以“心理分析 prompt” 举例,细化就是把小目标,再拆成一个个节点
心理分析
├── 诉求分析
│ ├── 分析诉求
│ ├── 选择一个诉求
│ └── 一句话总结
├── 阻力分析
│ ······
└── 推力分析
······
根据我们的要求,需要拆分每一步做到什么,相对于页面设计不同,文字的设计,会更加很模糊。
模糊 < 文字 < 画面 < 具象
为了追求足够具象,每一块内容,都可以继续拆分,直到最小的动作。
以“分析诉求”举例,又可以拆分成:关键词提取、评分。
③最后是简化冗余
为什么要简化冗余?
-
llm 的处理效果,文本(token)过多时,会减弱
-
编写处理过程,会复杂
类似于代码的概念,如何简化原本复杂的要求。举例:
冗余:
我想预订一个酒店,要求是:位于市中心,必须是5星级的,房间要有空调和WiFi,要有24小时前台服务,需要提供早餐,最好有健身房和游泳池,房间要朝南,要有大床房,浴室要有浴缸,价格在1000-1500元之间,要能停车,最好是知名连锁酒店,前台要会说英语,房间要在高层,要有商务中心,要有餐厅...
简化:
需求:预订5星级酒店 核心要求: 1. 位置:市中心 2. 价格:1000-1500元 3. 设施:含早餐,停车场
2.用词具体,不要模糊
具体是什么意思?
可衡量+行为/动作+标准
具体对应的是模糊,不是抽象。
1.使用可衡量的指标
-
模糊:“需要一个大房间”
-
具体:“房间面积至少30平方米”
2.使用具体的行为/动作描述
-
模糊:“系统要快”
-
具体:“页面加载时间不超过3秒”
3.明确定义成功标准
-
模糊:“做得好看一点”
-
具体:“使用蓝色主题,字体大小16px,页面留白不少于15px”
3.用词精准
什么是用词精准?
精准是一个相对定义。语义的形成,高度依赖场景,也就是上下文关联。
在灰姑娘里,毒苹果,是一个精准用词,坏苹果是大概用词,
在心理学里,依恋关系,是一个精准用词,亲子关系,是一个大概用词。
如果我想要编写心理学的内容,提供“依恋关系”,大概率比“亲子关系”更能呈现心理学相关内容。
根据这个逻辑线,多余的文本,会增加“脏词”的获取。
4.以“自身”为 尺
在写 prompt 的过程当中,我曾经有一个状态,老想去抄别人的内容,但是呈现不出自己想要的效果。
后来换了种方式,让别人的武器,根据自身条件,打造成适合自己的,可能不是一模一样,但是有用
如果要去习得一个技能,应该不止从脑中过,要学会用过去的经验,去实践一遍
让自己有发自内心的关键理解、关键感悟
形成具体的指令和用词,然后实践反复锤炼
就像别人定制的戒指,是别人固定的尺寸
但是自己要带的话, 要重新打造一下,改成适合自己的尺寸
有点类似,抄别人的 APP,但没有真正去理解背后的需求是什么。
编写 prompt 的利器-Lisp语言
lisp 是一个结构化+函数化的语言
结构化:层级清晰,举例
lisp:
(点餐 (主食 (米饭 2份) (面条 1份)) (菜品 (热菜 (宫保鸡丁) (青椒肉丝)) (凉菜 (凉拌黄瓜))) (饮品 (茶水 2杯) (可乐 1杯)))
自然语言:
我要点两份米饭,一份面条。热菜要宫保鸡丁和青椒肉丝,凉菜要一份凉拌黄瓜。饮料的话,来两杯茶和一杯可乐。
函数化:运算、递进逻辑清晰
-
简洁:使用最少的符号表达完整的计算过程
-
嵌套结构:括号清晰地表示了运算的优先级
举例:
lisp:
`(计算成绩 (学生 "小明" (定义 平均分 (/ (+ (科目 "数学" 85) (科目 "语文" 90) (科目 "英语" 88)) 3)) (定义 是否及格 (判断 (> @平均分 60)))))`
自然语言:
小明的数学成绩是85分,语文90分,英语88分。他的总分是把这三科加起来,平均分是总分除以3。如果平均分大于60分就算及格。
AI大模型学习路线
如果你对AI大模型入门感兴趣,那么你需要的话可以点击这里大模型重磅福利:入门进阶全套104G学习资源包免费分享!
扫描下方csdn官方合作二维码获取哦!
这是一份大模型从零基础到进阶的学习路线大纲全览,小伙伴们记得点个收藏!
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
100套AI大模型商业化落地方案
大模型全套视频教程
200本大模型PDF书籍
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
LLM面试题合集
大模型产品经理资源合集
大模型项目实战合集
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓
