在人工智能的浪潮中,智能体技术正逐渐成为推动行业进步的关键力量。各个部件都已准备就绪:计算机接口(computer use)使用MCP(Model Context Protocol)、强化工具插件(tools)使用。现在是时候开始考虑构建这些智能体系统了。本文将结合业界实际情况,深度挖掘构建有效智能体的策略,从基础定义到实战优化,为您提供一站式的智能体构建指南。
一、智能体的定义与架构
智能体(Agent)在人工智能领域有着多种定义方式。一些客户将其视为能够独立运行、使用各种工具完成复杂任务的完全自主系统。而Anthropic则将智能体系统分为两大类:工作流程和智能体。工作流程通过预定义代码路径编排LLM和工具,而智能体则是LLM动态地指导自身流程和工具使用,对如何完成任务保持控制。
二、构建智能体的最佳实践
1. 何时使用智能体:在构建LLM应用程序时,应尽可能寻找最简单的解决方案,并在必要时增加复杂性。智能体系统通常在延迟和成本上进行权衡以获得更好的任务性能。
2. 框架的选择:市面上有许多框架可以帮助实现智能体系统,如LangChain的LangGraph、亚马逊Bedrock的AI Agent框架等。这些框架简化了调用LLM、定义和解析工具等任务,但也可能会增加额外的抽象层,使调试变得困难。
3. 构建块与工作流程:智能体系统的基本构建块是增强型LLM,它们可以生成搜索查询、选择合适的工具以及确定要保留的信息。工作流程包括提示链、路由、并行化和编排器-工作器等模式,适用于不同场景和需求。
The augmented LLM
The prompt chaining workflow
The routing workflow
The parallelization workflow
The orchestrator-workers workflow
The evaluator-optimizer workflow
Autonomous agent
High-level flow of a coding agent
三、智能体的测试与优化
智能体的调优是一个至关重要的环节,直接影响智能体的性能和实际应用效果。调优前的准备包括对智能体的基础架构、算法原理以及应用场景进行全面了解。调优过程中的挑战包括模型优化、数据预处理、硬件与网络优化等。
四、智能体工具的优化
工具是智能体的一个重要部分,它们使LLM能够与外部服务和API交互。工具定义和规格应该像对整体提示一样给予足够的提示工程关注。例如,提供示例用法、边缘案例、输入格式要求和与其他工具的明确界限。
五、智能体的未来发展
随着大模型技术的发展,基于大模型搭建的智能体的能力边界也在不断突破。智能体技术可以创建各种各样的AI应用,如Copilot、DB-GPT等,这些应用已经成为工作生活中不可缺少的存在。
结语:
构建有效的智能体不仅需要对技术有深刻的理解,还需要在实践中不断优化和调整。通过遵循上述原则和策略,您可以构建出不仅强大而且可靠、可维护并且受用户信任的智能体系统。未来,智能体将在更多领域发挥重要作用,推动企业向智能化、高效化方向发展。
AI大模型学习路线
如果你对AI大模型入门感兴趣,那么你需要的话可以点击这里大模型重磅福利:入门进阶全套104G学习资源包免费分享!
扫描下方csdn官方合作二维码获取哦!
这是一份大模型从零基础到进阶的学习路线大纲全览,小伙伴们记得点个收藏!
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
100套AI大模型商业化落地方案
大模型全套视频教程
200本大模型PDF书籍
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
LLM面试题合集
大模型产品经理资源合集
大模型项目实战合集
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓
