【Llama 3.3开源】70B参数媲美405B性能,支持128K上下文:革新大模型时代!

01

引言

近期,Meta开源了Llama 3.3 多语言大型语言模型(LLM),Llama 3.3 是一个预训练并经过指令调优的生成模型,参数量为70B(文本输入/文本输出)。Llama 3.3 指令调优的纯文本模型针对多语言对话用例进行了优化,并在常见的行业基准测试中优于许多可用的开源和闭源聊天模型。

Llama 3.3 是一个使用优化后的Transformer架构的自回归语言模型。调优版本使用监督微调(SFT)和基于人类反馈的强化学习(RLHF)来与人类对有用性和安全性的偏好保持一致。

  • 训练数据:新的公开在线数据混合集

  • 参数量:70B

  • 输入模态:多语言文本

  • 输出模态:多语言文本和代码

  • 上下文长度:128K

  • GQA:是

  • 训练tokens:15T+(仅指预训练数据)

  • 知识截止日期:2023年12月

  • 支持的语言: 英语、德语、法语、意大利语、葡萄牙语、印地语、西班牙语和泰语

*注:Llama 3.3 的训练数据集包含了比所支持的8种语言更广泛的语言。开发者可以在遵守 Llama 3.3 社区许可和可接受使用政策的前提下,对 Llama 3.3 模型进行微调以支持更多语言,在这种情况下,开发者需确保在额外语言中使用 Llama 3.3 是安全且负责任的行为。

02

模型下载

模型链接:

https://www.modelscope.cn/models/LLM-Research/Llama-3.3-70B-Instruct

CLI下载:

modelscope download --model LLM-Research/Llama-3.3-70B-Instruct

Python SDK下载:

#模型下载``from modelscope import snapshot_download``model_dir = snapshot_download('LLM-Research/Llama-3.3-70B-Instruct')

===

03

模型推理

transformers推理

import transformers``import torch``from modelscope import snapshot_download``   ``model_id = snapshot_download("LLM-Research/Llama-3.3-70B-Instruct")``   ``pipeline = transformers.pipeline(`    `"text-generation",`    `model=model_id,`    `model_kwargs={"torch_dtype": torch.bfloat16},`    `device_map="auto",``)``   ``messages = [`    `{"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},`    `{"role": "user", "content": "Who are you?"},``]``   ``outputs = pipeline(`    `messages,`    `max_new_tokens=256,``)``print(outputs[0]["generated_text"][-1])

Ollama:一行命令运行魔搭上的 Llama-3.3-70B-Instruct GGUF模型

  1. 设置ollama下启用
ollama serve
  1. ollama run ModelScope任意GGUF模型,指定model id即可:
ollama run modelscope.cn/lmstudio-community/Llama-3.3-70B-Instruct-GGUF

04

模型微调

这里我们介绍使用ms-swift 3.0对Llama3.3进行自我认知微调。

在开始微调之前,请确保您的环境已正确安装

# 安装ms-swift``pip install git+https://github.com/modelscope/ms-swift.git

微调脚本如下:

CUDA_VISIBLE_DEVICES=0,1 swift sft \`    `--model LLM-Research/Llama-3.3-70B-Instruct \`    `--dataset AI-ModelScope/alpaca-gpt4-data-zh#500 \`           `AI-ModelScope/alpaca-gpt4-data-en#500 \`              `swift/self-cognition#500 \`    `--train_type lora \`    `--lora_rank 8 \`    `--lora_alpha 32 \`    `--num_train_epochs 1 \`    `--logging_steps 5 \`    `--torch_dtype bfloat16 \`    `--max_length 2048 \`    `--learning_rate 1e-4 \`    `--output_dir output \`    `--target_modules all-linear \`    `--model_name 小黄 'Xiao Huang' \`    `--model_author 魔搭 ModelScope \`    `--per_device_train_batch_size 1 \`    `--gradient_accumulation_steps 16

训练显存占用:

推理脚本:

若出现兼容问题,请关注:https://github.com/modelscope/ms-swift

CUDA_VISIBLE_DEVICES=0 swift infer \`    `--ckpt_dir output/vx-xxx/checkpoint-xxx \`    `--stream true

推理效果:

AI大模型学习路线

如果你对AI大模型入门感兴趣,那么你需要的话可以点击这里大模型重磅福利:入门进阶全套104G学习资源包免费分享!

扫描下方csdn官方合作二维码获取哦!

在这里插入图片描述

这是一份大模型从零基础到进阶的学习路线大纲全览,小伙伴们记得点个收藏!

请添加图片描述
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

100套AI大模型商业化落地方案

请添加图片描述

大模型全套视频教程

请添加图片描述

200本大模型PDF书籍

请添加图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

LLM面试题合集

请添加图片描述

大模型产品经理资源合集

请添加图片描述

大模型项目实战合集

请添加图片描述

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序员辣条

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值