一、前言
2024年11月6日,国家卫生健康委员会办公厅印发了卫生健康行业人工智能应用场景参考指引的通知,在该文件中将AI在卫生健康行业应用场景分为四大部分的13项。
结合国卫办的通知,我想AI应用普及将会是大势所趋。但真正的应用起来,还需要不断地进行尝试,真正地解决医生、患者关心的问题,我想才能得到更快速的推广。
所以我就想就一些具体的应用作一些探讨,从细微处看看AI的发展趋势。
本文个人就探讨当下医院方面关注比较多,个人也认为具有应用前景的部分应用场景——AI智能预问诊+自动化病历生成功能。
二、何为“AI智能预问诊系统”
在指引文件中,对智能预问诊的定义是:“在医生问诊前,通过图文、语音等人机交互,采集患者临床专科病史信息辅助生成电子病历。”
所以,智能预问诊是指通过最新的人工智能技术,利用自然问答的交互形式(图文、语音、人机协同交互等),采集患者病情的信息,并自动化生成该患者的电子病历。
三、智能预问诊系统的应用价值
在指引文件中,对智能预问诊的应用场景描述是:
”在医生问诊前,利用语音识别、自然语言理解、图像识别、领域知识融合等人工智能技术,通过文字、语音、辅助检查报告图像或报告上传等方式,根据不同临床专科问诊要求,通过人机交互,引导患者完成症状、现病史、既往史、辅助检查结果等临床信息采集。通过智能算法,依据病历的书写要求,自动提取关键信息,生成格式标准、内容准确的病史文书,供医生在书写病历时参考和引用,帮助医生快速了解患者的基本病情,减少电子病历录入的时间,增加与患者交流病情的时间,提高诊疗效率,提升医疗服务质量。”
我们可以理解为,通过这样的形式,帮助医生提前了解患者病情的信息,减少门诊过程中病历输入时间,增加患者病情交流时间,提高诊疗效率和医疗服务的质量。所以如果能做好,对于医生还是患者,意义都是很大的!
四、AI智能预问诊系统功能流程
AI智能预问诊功能的核心:信息采集+自动化病历生成。
AI智能预问诊的典型应用场景及流程如下图所示:
第一步预问诊,分为院外和院内场景
1)院外场景,患者通过医院官方公众号/小程序等完成预约挂号后,同步调用智能预问诊系统,实现病情预问诊。
2)院内场景,首先患者在候诊区可以通过扫码的方式,提前进行病情预问诊;然后患者进入诊区后,通过语音设备实现患者病情自动采集。
第二步,自动化病历生成
系统根据采集到的信息,生成规范化的电子病历文书,实际上系统在完成患者预问诊的同时,就已生成相关病历文档。
第三步,医生使用
1)病情了解,对于院外患者,医生可以通过手机APP提前了解病情信息;2)病历引用,对于已进行预问诊的患者,系统会自动提醒医生,可一键引入已生成的电子病历文档(语音模式则根据诊间语音采集信息自动生成)。
五、AI智能预问诊应用现状及挑战
智能预问诊的技术已经很成熟,该系统的应用完全可以提高医生的工作效率,提高病历书写的规范,应该是很有应用前景的!
不过,根据目前的使用情况,应用挑战还很多,核心的问题还是系统使用率还不高,做了很多工作,最后患者能够实现整个流程,且最终能够被医生引用的病历可能很少。
为什么会出现这样的情况,我想主要有以下一些问题:
1)使用习惯的问题。作为新生事物,都有一个普及与适应的过程;
2)便捷与信息准确的矛盾问题。站在患者的角度,需要回答的问题自然越少越好,但站在医生的立场,当然希望信息越准确越便于诊疗,这期间就会存在矛盾!
3)技术方面的细节问题。不同使用者的个性化问题,不同科室间的差异问题,还有语音采集识别的准确性等等。
总的来讲,这是一个很好的系统,但如何更加便捷,让百姓愿意用,真正达到效果,提高使用率,是目前普遍存在的一个问题,还是需要我们不断地去尝试与和突破,才能达到最初的期望。
六、关于后续应用推进的一些看法
预问诊系统的核心是自动化病历生成,患者人机交互只是一个信息收集的过程,目的是帮助医生节省病历书写时间,提高病历质量。
那么该如何把这个系统用好,我有几点看法:
首先,系统本身需要不断地优化与调优,逐步解决现有系统存在的问题,继而提升使用效率;
其次,应用场景拓展问题,该系统的核心是自动化病历生成,基于该功能,其实还有其他应用场景,比方住院场景的自动化病历应用场景;互联网医院自动化病历应用场景;互联网医院预问诊病情收集应用场景等等。这些技术都是相通的,门诊能应用的,住院也都可以。
最后,融合应用,提升便捷性。这里应该包括技术的融合,例如,是不是可以结合最新的数字人技术,实现语音对话模式应用;也包括应用场景的融合,如何与智能分导诊、智能客服等场景的融合应用等等。
AI的应用发展迅速,接下来还会有其他应用的不断涌现。真正的使用,也需要我们脚踏实地,不断探索!
七、最后分享
AI大模型作为人工智能领域的重要技术突破,正成为推动各行各业创新和转型的关键力量。抓住AI大模型的风口,掌握AI大模型的知识和技能将变得越来越重要。
学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。
这里给大家精心整理了一份
全面的AI大模型学习资源
,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习、面试题等,资料免费分享
!
AI大模型学习路线
如果你对AI大模型入门感兴趣,那么你需要的话可以点击这里大模型重磅福利:入门进阶全套104G学习资源包免费分享!
扫描下方csdn官方合作二维码获取哦!
这是一份大模型从零基础到进阶的学习路线大纲全览,小伙伴们记得点个收藏!
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
100套AI大模型商业化落地方案
大模型全套视频教程
200本大模型PDF书籍
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
LLM面试题合集
大模型产品经理资源合集
大模型项目实战合集
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓
