Token是什么?

李升伟 整理

“Token” 是一个多义词,具体含义取决于上下文。以下是几种常见的解释:

1. 计算机科学中的 Token

定义:在编程和计算机科学中,Token 是源代码经过词法分析后生成的最小单位,通常用于编译器和解释器。

例子:

在代码 int a = 10; 中,int、a、=、10 和 ; 都是 Token。

作用:编译器通过 Token 来理解代码的结构和语义。

2. 区块链和加密货币中的 Token

定义:在区块链技术中,Token 是基于区块链发行的数字资产,代表某种价值或权益。

类型:

加密货币:如比特币(BTC)、以太坊(ETH)。

实用型 Token:用于访问特定服务或功能,例如以太坊上的 ERC-20 Token。

证券型 Token:代表某种金融资产,如股票或债券。

NFT(非同质化 Token):独一无二的数字资产,通常用于艺术品或收藏品。

作用:Token 可以用于支付、投资、治理投票等。

3. 身份验证中的 Token

定义:在网络安全中,Token 是一种用于身份验证和授权的凭证。

类型:

访问令牌(Access Token):用于访问受保护的资源。

刷新令牌(Refresh Token):用于获取新的访问令牌。

例子:OAuth 2.0 协议中的 Token 用于授权第三方应用访问用户数据。

4. 经济学中的 Token

定义:在经济学中,Token 是一种象征性的货币或代币,通常用于特定场景。

例子:

游戏中的虚拟货币。

公共交通系统中的代币。

5. 语言学中的 Token

定义:在语言学中,Token 是文本中实际出现的单词或符号。

例子:

在句子 “I love programming.” 中,有 3 个 Token:I、love、programming。

对比:与 “Type” 不同,Type 指的是单词的唯一形式。例如,句子 “I love programming and I love coding.” 有 6 个 Token,但只有 5 个 Type(I、love、programming、and、coding)。

6. 硬件 Token

定义:一种物理设备,用于身份验证或授权。

例子:

银行使用的动态口令生成器。

USB 安全密钥(如 YubiKey)。

总结

Token 的具体含义取决于上下文:

在编程中,它是代码的最小单位。
在区块链中,它是数字资产。
在网络安全中,它是身份验证的凭证。
在经济学中,它是象征性货币。
在语言学中,它是文本中的单词

(来自deepseek问答。)

### 什么是 AI Token? 在人工智能领域,尤其是在自然语言处理(NLP)和大语言模型(LLM)中,**token** 是模型处理和生成文本的基本单位。它可以是一个单词、一个标点符号、一个子词(subword),甚至是一个特殊符号。模型不会直接理解人类语言,而是将文本切分成更小的单元进行处理,这些单元就是 token,是模型输入输出的最小语义/语法单位[^2]。 例如,在英文中,一个 token 可能是一个单词,如 "hello" 或 "world",而在中文中,token 可能是一个词或短语,如 “人工智能” 或 “模型”。对于一些特殊符号或标点,如逗号、句号,它们也可能被视为单独的 token。 ### Token 的来源:分词器(Tokenizer) 每个大语言模型都依赖一个特定的 **分词器(Tokenizer)** 来将文本转换为 token。常见的分词方式包括: - **Word-based(基于单词)**:将文本按单词进行切分,适用于英文等以空格分隔的语言。 - **Character-based(基于字符)**:将每个字符作为一个 token,适用于所有语言,但可能导致 token 数量过多。 - **Subword-based(基于子词)**:如 BPE(Byte-Pair Encoding)、WordPiece 等,结合了单词和字符的优点,适用于多语言处理。 这些分词方法决定了模型如何将原始文本转化为 token,并影响模型的性能和处理能力[^2]。 ### Token 的作用 Token 在 AI 对话系统和语言模型中扮演着关键角色: - **输入处理**:模型通过 token 来理解输入的文本内容。每个 token 都会被映射为一个向量,作为模型的输入。 - **输出生成**:模型在生成文本时,也是以 token 为单位逐步生成输出结果。 - **长度限制**:由于模型的上下文长度有限(如 GPT-3 的最大上下文长度为 2048 token),token 的数量直接影响了模型可以处理的文本长度。 - **计算资源管理**:token 的数量也决定了模型的计算资源消耗,较长的文本需要更多的计算资源和处理时间[^1]。 ### 示例代码:使用 Hugging Face 的 Tokenizer 以下是一个使用 Hugging Face 提供的 `transformers` 库对文本进行 token 化的示例代码: ```python from transformers import BertTokenizer # 加载预训练的 BERT 分词器 tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') # 示例文本 text = "Artificial intelligence is transforming the world." # 将文本转换为 token tokens = tokenizer.tokenize(text) # 输出 token 列表 print(tokens) ``` 输出结果可能如下: ``` ['artificial', 'intelligence', 'is', 'transforming', 'the', 'world', '.'] ``` 在这个例子中,`tokenize` 方法将输入文本切分为多个 token,每个 token 都是模型可以处理的基本单位[^2]。 ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值