模型理解和处理的基本单位就是Token,那模型处理的基本单位又是什么呢?
它可以是单词、字符、短语甚至图像片段、声音片段等。例如,一句话会被分割成多个 Token,每个标点符号也会被视为单独的 Token。
Token 的划分方式会影响模型对数据的理解和处理。例如,中英文的 Token 划分方式就存在差异。对于中文,由于存在多音字和词组的情况,Token 的划分需要更加细致。
大型语言模型(LLM)是不能真直接正理解原始文本的,相反,大模型只能识别被转化的token,文本被转换为称为token的数字表示形式,然后将这些token提供给模型进行处理。
比如我们最熟悉的那个下雨天的对联:
“下雨天留客天天留我不留” 对于不同的断句和符号分割,就会生成不同的token,不同的token组合就会是不同意思。
一个常用的token分析例子:今天天气很好 我们对这个句子进行Token化,则这个句子可以有以下几种Token序列:
基于空格的 Token 化:
css
复制代码
["今天", "天气", "很好"]
1
2
3
基于字的 Token 化:
css
复制代码
["今", "天", "天", "气"